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What will approximate change of quantitative characters?

... when it occurs by genetic drift of pre-existing alleles?

... when it also occurs by mutation to new alleles?

... when variable selection affects the alleles at each locus?

... when selection is on the fitness based on the whole phenotype?
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Approximating genetic drift of two alleles

Can we compute transition probabilities for genetic models such as the
Wright-Fisher model?

Can we do this analytically? No. (although the right eigenvectors
and the eigenvalues are known) the full set of left eigenvalues has
never been derived.
We can take such a model for a given (not-too-big) population size
N and compute the transition probability matrix, then either power it
up numerically or get its eigenvalues and eigenvectors

OK, what about the diffusion approximation. Aren’t they very close
approximations? Yes, they and Kimura (1955a, 1955b) derived
transition probabilities for the diffusion process as sums of series in
Gegenbaur polynomials. But they are difficult to work with.
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Edwards and Cavalli-Sforza’s approximation

Luca Cavalli-Sforza (and Edwards), 1963 Anthony Edwards, 1970

‘

The expectation of gene frequency change in one generation (under pure
genetic drift without mutation) is zero. The variance is the binomial
variance

E
[

(∆p)
2
]

=
p(1 − p)

2Ne

That variance is not constant: it varies with p (in a parabola), but maybe
we can roughly approximate it by dealing with the case where all
populations have roughly similar gene frequencies, so the variances are
nearly the same. Maybe. Roughly.
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How good is this?
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Starting with p = 0.5, after 10 generations in a population of size 50.
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What about a quantitative character?

If a quantitative character is a sum of contributions from a number of loci,
then if the individual locus gene frequencies have their change
approximated by Brownian Motion, the linear combination will also change
by Brownian motion. This works for multiple alleles.

if there is any dominance, there will be some nonlinearity and the
approximation will be less good.

Epistasis can cause even more trouble.

First discussed by me (Felsenstein, 1973).
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But, if there are mutations making incremental changes ..

... as we saw with the discussion of quantitative characters, if a relatively
constant genetic variance is maintained, and mutations have additive
effects, then genetic drift will cause the mean to change in a random walk
close to Brownian Motion.

However, if one approaches some limit where most mutations oppose
movement to it, and there are no mutations allowing you to go past that
limit, this approximation will be poor.
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Brownian motion is mathematically tractable

You can easily compute transition probabilities from one value to another,
since the net change after “time” t is normal. with mean zero and
variance σ2t , and changes in successive time intervals are independent.

When two lineages share a period of common ancestry, the resulting tip
species have phenotypes that covary, the covariance being the variance
expected during their shared ancestry.
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Covarying character change along a lineage

What is the distribution of changes in multiple characters (say p of them)
along a lineage? Simply the appropriate multiple of the infinitesimal rate of
change per unit branch length.

If a set of characters x , changes under covarying Brownian motion, in
time t (or a pseudo-time branch-length t ) the change will be distributed
as

∆x ∼ N (0,Vt),

(where V is the covariance matrix of the infinitesimal change of the
Brownian Motion).
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What causes change in quantitative characters?

For neutral mutation and genetic drift, can show that for a quantitative
character with additive genetic variance VA and population size N the
genetic (additive) value of the population mean is:

Var(∆ḡ) = VA/N

If mutation and drift are at equilibrium:

E
[

V
(t+1)
A

]

= V
(t)
A

(

1 −
1

2N

)

+ VM
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In neutral traits additive genetic variance rules

so that
E [VA] = 2NVM

whereby
Var[∆ḡ] = (2NVM) /N = 2VM

an analog of Kimura’s result for neutral mutation.

Thus to transform characters to independent Brownian motions of equal
evolutionary variance, we could use the additive genetic variance VA.
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With selection ... life is harder
There is the “Breeder’s Equation” of Wright and Fisher (1920’s)

∆z = h2S

and Russ Lande’s (1976) recasting of that in terms of slopes of mean
fitness surfaces:

S = VP

d log (w̄)

dx̄

∆z = (VA/VP) VP

d log (w̄)

dx̄
= VA

d log (w̄)

dx̄

Note – it’s heritability times the slope of log of mean fitness with respect to
mean phenotype. There is an exact multivariate analog of this equation.
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Selection towards an optimum

P

Vs

F
it
n
es
s

Phenotype

If fitness as a function of phenotype is:

w(x) = exp

[

−
(x − p)2

2Vs

]

Then after some completing of squares and integrating, the change of
mean phenotype “chases” the optimum:

m′ − m =
VA

Vs + VP

(p − m)

(There is an exact matrix analog of this for multiple characters).
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Sources of evolutionary correlation among characters

Variation (and covariation) in change of characters occurs for two reasons:

Genetic covariances. (the same loci affect two or more traits)
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Sources of evolutionary correlation among characters

Variation (and covariation) in change of characters occurs for two reasons:

Genetic covariances. (the same loci affect two or more traits)

Selective covariances(Tedin, 1926; Stebbins 1950). The same
environmental conditions select changes in two or more traits –
even though they may have no genetic covariance.
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Sources of evolutionary correlation among characters

Variation (and covariation) in change of characters occurs for two reasons:

Genetic covariances. (the same loci affect two or more traits)

Selective covariances(Tedin, 1926; Stebbins 1950). The same
environmental conditions select changes in two or more traits –
even though they may have no genetic covariance.

Change of phenotypic means is a result of genetic covariances and
selective covariances, where the former affects both response to selection
and wandering due to genetic drift.
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A simple example of selective covariance

a simple example:

(temperate) (arctic) (arctic)(temperate) (temperate)

size
color
limb
length

size

color

limb
length

covariation due not to genetic correlation
but to covariation of the selection pressure

These are Bergmann’s, Allen’s and Glogler’s Rules

not They are presumably the result of genetic correlations
but result from patterns of selection

Variation and evolution
in plants.  Columbia Univ. Press, New York.
page 121

G. L. Stebbins.  1950.  
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Chasing a peak, simulated with two characters
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Genetic covariances assumed negative, but the wanderings of the
adaptive peaks assumed positively correlated. In the first 100 generations
the genetic covariances are most influential.
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Genetic covariances assumed negative, but the wanderings of the
adaptive peaks assumed positively correlated. After a while (every 10th
generation up to generation 1000), the wanderings of the peaks start to
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Chasing a peak, simulated with two characters

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

Genetic covariances assumed negative, but the wanderings of the
adaptive peaks assumed positively correlated. In the long run (every
100th generation up to generation 10,000) the means go mostly where the
peaks go. Brownian motion models, multiple characters, and phylogenies – p.21/61



A case that has received too little attention

Suppose characters x and y are genetically correlated.

and y is under optimum selection, but x is the one we observe.

What will we see? In effect, the sum (actually, a weighted average)
of an Ornstein-Uhlenbeck process and Brownian Motion.

So Brownian motion restricted in the short run but not in the long
run.
It will look almost like Ornstein-Uhlenbeck Process with an optimum
which wanders by Brownian Motion.

Most models so far do not allow for characters that are observed to covary
with those that aren’t observed.
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A research program?

What we could imagine doing is:

We might hope to infer additive genetic covariances by doing
quantitive genetics breeding experiments to infer them from
covariances among relatives, perhaps even in multiple species.

Infer the covariances of the changes along the phylogeny.

From them, back-calculate the selective covariances.

The genetic covariances may also be inferrable from differences
between nearby tips on the tree if we do not have breeding
experiments.

There is little or no hope of inferring “selective correlations” more
directly without a complete understanding of the functional ecology.
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Brownian motion along a tree
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Covariances of species on the tree
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An outcome of Brownian motion on a 5-species tree
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An outcome of Brownian motion on a 5-species tree
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An outcome of Brownian motion on a 5-species tree
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An outcome of Brownian motion on a 5-species tree

Brownian motion models, multiple characters, and phylogenies – p.29/61



“Pruning” a tree in the Brownian motion case

One can take two neighboring tips, and consider their difference x1 − x2

as well as a weighted average ax1 + (1 − a)x2. Using weights
a : 1 − a = 1/v1 : 1/v2, the weighted average is independent of the
difference, and the difference is also independent of the rest of the tree.

In fact, this weighted average behaves like a tip: Its covariances with the
other species are the same as those of x1 and x2. It acts just as if the tree
were pruned, cutting off species 1 and 2, leaving a single species whose
variance is a bit bigger.

Var[ax1 + (1 − a)x2] = v8 + v9 +
v1v2

v1 + v2

so in effect, a small extra amount of branch length is added.
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“Pruning” a tree in the Brownian motion case
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(True in the sense that the log-likelihoods – which are a bit different than
the usual likelihoods – add up, since the likelihoods multiply).

Brownian motion models, multiple characters, and phylogenies – p.31/61



A simple case to show effects of phylogeny
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Two uncorrelated characters evolving on that tree
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Identifying the two clades
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A tree on which we are to observe two characters
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Contrasts on that tree

Variance
proportional

Contrast to

y1 = xa − xb 0.4

y2 = 1

4
xa + 3

4
xb − xc 0.975

y3 = xd − xe 0.2

y4 = 1

6
xa + 1

2
xb + 1

3
xc − 1

2
xd − 1

2
xe 1.11666
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Contrasts for the 20-species two-clade example
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An example: Riek and Geiser, 2013

Alexander Riek and Fritz Geiser. 2013. Allometry of thermal variables in
mammals: consequences of body size and phylogeny. Biological Reviews
88 (3): 564-572.
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body temperature vs. log(body size) contrasts vs. contrasts
(P for slope 6= 0 is 0.000375) (P for slope 6= 0 is 0.116)

Brownian motion models, multiple characters, and phylogenies – p.38/61



When the tree is noisy: Propagating bootstrap sampling
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Propagating bootstrap sampling
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Propagating bootstrap sampling
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Propagating bootstrap sampling
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Propagating bootstrap sampling
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A Bayesian model
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Bayesian MCMC
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Some complications

(As noted above) dealing with uncertainty about the phylogeny

Brownian motion models, multiple characters, and phylogenies – p.53/61



Some complications

(As noted above) dealing with uncertainty about the phylogeny

Small sample size from species means their species means are
uncertain. Must use a model with another level of variation –
within-species phenotypic variation (Ricklefs and Starck, 1996; Ives
et al., 2007; Felsenstein, 2008)
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uncertain. Must use a model with another level of variation –
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et al., 2007; Felsenstein, 2008)

Rate of change of morphological characters need not be constant
on the molecular tree branch lengths.
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Some complications

(As noted above) dealing with uncertainty about the phylogeny

Small sample size from species means their species means are
uncertain. Must use a model with another level of variation –
within-species phenotypic variation (Ricklefs and Starck, 1996; Ives
et al., 2007; Felsenstein, 2008)

Rate of change of morphological characters need not be constant
on the molecular tree branch lengths.

Note – regressions involving contrasts should assume that they all
have expectation zero.

How to infer the effect of an environmental variable when only its
present-day values are known but not its values when the past
changes were occurring? (note: regressing on the present-day
values is generally wrong, see paper by Hansen and Bartoszek,
Systematic Biology, 2012).
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Some complications

(As noted above) dealing with uncertainty about the phylogeny

Small sample size from species means their species means are
uncertain. Must use a model with another level of variation –
within-species phenotypic variation (Ricklefs and Starck, 1996; Ives
et al., 2007; Felsenstein, 2008)

Rate of change of morphological characters need not be constant
on the molecular tree branch lengths.

Note – regressions involving contrasts should assume that they all
have expectation zero.

How to infer the effect of an environmental variable when only its
present-day values are known but not its values when the past
changes were occurring? (note: regressing on the present-day
values is generally wrong, see paper by Hansen and Bartoszek,
Systematic Biology, 2012).

Might be able to assume environment does Brownian motion and
infer covariances. Less reason to assume environment does
Brownian motion than for characters.
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Poor inference of covariation – what to do with that?

Covariances are hard to infer with only (say) 50 species sampled
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Covariances are hard to infer with only (say) 50 species sampled

... particularly if they samples are not independent but on a tree
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... particularly if the quantitative characters are thresholded
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Poor inference of covariation – what to do with that?

Covariances are hard to infer with only (say) 50 species sampled

... particularly if they samples are not independent but on a tree

... particularly if the quantitative characters are thresholded

How do we propagate the resulting uncertainty when biologists want
“fly on the wall” certainty?
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Poor inference of covariation – what to do with that?

Covariances are hard to infer with only (say) 50 species sampled

... particularly if they samples are not independent but on a tree

... particularly if the quantitative characters are thresholded

How do we propagate the resulting uncertainty when biologists want
“fly on the wall” certainty?

Expanding to more species may put the model at risk
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Poor inference of covariation – what to do with that?

Covariances are hard to infer with only (say) 50 species sampled

... particularly if they samples are not independent but on a tree

... particularly if the quantitative characters are thresholded

How do we propagate the resulting uncertainty when biologists want
“fly on the wall” certainty?

Expanding to more species may put the model at risk

Expanding to more characters just adds new parameters to estimate
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References for genetic drift

Feller, W. 1951. Diffusion processes in genetics. pp. 227-246 in Proceedings of
the 2nd Berkeley Symposium on Mathematical Statistics and Probability, ed. J.
Neyman. University of California Press, Berkeley and Los Angeles.
[Feller’s partial solution of the pure drift process for the Wright-Fisher
model (and his famous proof that the process converges to thediffusion
process)]

Kimura, M. 1955a. Solution of a process of random genetic drift with a
continuous model. Proceedings of the National Academy of Sciences 41:
144-150. [Exact solution in Gegenbaur polynomials for two-allele pure
genetic drift in a diffusion process approximation]

Kimura, M. 1955b. Random drift in a multi-allelic locus. Evolution 9: 419-435.
[The same, for three alleles]
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References for the Brownian Motion approximation

Edwards, A.W. F. and L. L. Cavalli-Sforza. 1964. Reconstruction of
evolutionary trees. pp. 67–76 in Phenetic and Phylogenetic Classifcation, ed.
V. H. Heywood and J. McNeill. Systematics Association Publ. No. 6,
London.‘ [The first paper on numerical approaches to phylogeny
reconstruction; uses parsimony and proposes likelihood for gene frequency
trees]

Edwards, A.W. F. 1970. Estimation of the branch points of a branching
diffusion process. Journal of the Royal Statistical Society B 32: 155–174.
[More detailed consideration of the statistical properties of a maximum
likelihood approach to gene frequency phylogenies]

Felsenstein, J. 1973. Maximum likelihood estimation of evolutionary trees
from continuous characters. American Journal of Human Genetics 25:
471–492. [REML approach to gene frequency phylogenies, including the
contrasts algorithm for rapid computation of likelihood]

Nielsen, R., J. L. Mountain, J. P. Huelsenbeck, and M. Slatkin. 1998.
Maximum-likelihood estimation of population divergence times and
population phylogeny in models without mutation. Evolution 52: 669-677.
[Little-noticed but much more exact method that would require MCMC
machinery] Brownian motion models, multiple characters, and phylogenies – p.56/61



References on likelihood of Brownian Motion trees
Thompson, E. A. 1975. Human Evolutionary Trees. Cambridge University

Press, Cambridge [Thesis monograph on how to infer ML phylogenies from
gene frequencies, published because it won a Smith’s Prize at Cambridge
University]

Felsenstein, J. 1981. Maximum likelihood estimation of evolutionary trees
from continuous characters. Evolution 25: 471–492. [Reworks the 1973
paper with more care and some additional algorithmics, including discussion
of effect of character covariation]

Felsenstein, J. 1985. Phylogenies from gene frequencies: A statistical
problem. Systematic Zoology 34: 300–311. [Shows how gene frequency
changes depart from being approximated by Brownian Motion]
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References for multivariate Brownian motion
Felsenstein, J. 1988. Phylogenies and quantitative characters. Annual Review

of Ecology and Systematics 19: 445-471. [Review with mention of usefulness
of threshold model]

Felsenstein, J. 2002. Quantitative characters, phylogenies, and
morphometrics.pp. 27-44 in Morphology, Shape, and Phylogenetics, ed. N.
MacLeod. Systematics Association Special Volume Series 64. Taylor and
Francis, London. [Review repeating 1988 material and going into some more
detail on the question of threshold models.]

Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates, Sunderland,
Massachusetts. [See particularly Chapters 23–25. Mentions issues with
multivariate models, and also sample size issues in contrasts method].

Lande, R. 1976. Natural selection and random genetic drift in phenotypic
evolution. Evolution 30: 314-334. [Lande’s classic paper on drift versus
optimum selection]

Lande, R. 1979. The quantitative genetic analysis of multivariate evolution,
applied to brain-body size allometry. Evolution 33: 402-416. [Lande on
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