Outline of lectures 1-3

History of genetics in evolution

1. History has a persistent influence in biology. In a physics course, they do not teach it by first going over outdated ideas such as the caloric or ether. But in biology the phenomena are so complex, and the understanding of them is at an early stage, that old ideas can persist and distort our current understanding more than they do in other fields. To get some sense of these influences we need to look back.

2. Monster movies are an amusing example of the survival of Victorian ideas about evolution (e.g. *The Lost World* by Conan Doyle, where explorers find dinosaurs on a plateau in the Amazon. The plateaus really are there but the dinosaurs aren’t. This echoes pre-evolutionary views that nothing goes extinct, but can always be found surviving somewhere, because a Creator would not allow his works to be lost.) Generally a recent movie is a remake of a ’50s version, which was based on a ’20s silent film, which was based on a novel from at least 30 years before (whose author’s exposure to biology was even earlier).

3. We’ll start with systematics, the understanding of how natural diversity is arranged. Genetics comes into the story only later.

4. Aristotle. Categorized natural entities into “genus” and “species” (and did this not just for living things). This was typological thinking – it assumed that the real organisms were imperfect examples of idealized “types”. This was the dominant view through the Middle Ages, with people believing that Aristotle was correct by definition and the Church enforcing this view.

5. The Great Chain of Being. A linear order of animal species from worms up to us (and on to angels). Influential to this day when people think of “higher” and “lower” species. It is not necessarily an evolutionary view, as the linear order was originally thought of as static. It goes back at least to the 1600s.

6. (John Greene’s book *The Death of Adam* is a good account of this). From the 1500s on, developments in astronomy, anthropology, geology, and linguistics led to people being more ready to consider evolutionary ideas. Especially after the success of Isaac Newton’s laws of motion in explaining orbits in astronomy, people became interested in simple laws that would generate natural phenomena, rather than arbitrary divine patterns (such as planets arranged on rotating celestial crystal spheres in a neat geometric arrangement).
7. As Europeans explored distant continents from the 1500s on, they began to report on the animals and plants that they found and send back specimens. This complicated the understanding of natural history. How to arrange all of these organisms?

8. Karl Linné (usually called by his Latin name: Carolus Linnaeus). Swedish botanist of the mid-1700s. Invented hierarchical classification (also the “type specimen” system, and codified binomial nomenclature). The system was presented as disclosing the true (static) order of nature as laid down at creation. In Linnaeus’s view he had just happened to be the one who discerned the true plan in the mind of God (Linnaeus was not known for humility or modesty).

9. Linnaeus’s scheme was hierarchical, with groups within groups, and he gave names to levels (using Aristotle’s terms “genus” and “species” as two of them). He also invented the binomial system of naming, calling each species by its genus and species name in Latin, instead of using the longer Latin phrases that had been common earlier, which were more elaborate descriptions like “big-brown-common-thrush-with-a-red-breast”. Thus the wolf was “Canis lupus”, with just those two words.

10. His system did so well that it became widely used, as it succeeded in summarizing biological diversity better than many other systems present at the time, which were based on arbitrary geometric or numerological schemes (everything coming in threes or being arranged in triangles, for example).

11. If the groups we made in a classification system were entirely genealogical (so that each group was a branch of the tree and all its descendants – a monophyletic group), then we would expect a hierarchical classification system that was predicted by the phylogeny (evolutionary tree). Many textbook writers unthinkingly assume that this is the kind of classification system we have had. The success of hierarchical classification then becomes a simple, neat story. But this isn’t the kind of classification system we have had. The commonly used classification system in the recent past has been not quite genealogical.

12. The Linnean classification of organisms that has been in use most of the time since Linnaeus has many groups that are not monophyletic. (A group is monophyletic when it has its own common ancestor which is not the ancestor of anything else under discussion). Within the vertebrates, groups like Osteichthyes (bony fishes), and Reptilia (reptiles) are not monophyletic (as we tetrapods are also descendants of the common ancestor of Osteichthyes, and as the mammals and birds are also descendants of the common ancestor of reptiles). There has been a trend away from this, toward a purely monophyletic classification system, called “phylogenetic systematics”, since the 1960s. Many systematists would now not make a higher group called Reptiles, but would make one which has amniotes (birds, mammals and reptiles) and divide it into turtles, mammals, crocodiles-plus-birds, and snakes-plus-lizards.

described animal species as being graded into each other along a continuum, a version of the Great Chain of Being. But he also said that organisms changed and environment affected this. He primarily envisaged change by degeneration. (He also said earth was much older than 6000 years). Did not give much of a mechanism for this evolutionary change.

14. Jean Baptiste Pierre Antoine de Monet (Chevalier de Lamarck) (1744-1829). The first true evolutionary biologist. A man whose work is treated unfairly by biologists of our generation. After the French Revolution changed the Royal Botanical Garden into a public institution, he was offered a professorship of “worms” at the Natural History Museum in Paris. He had been working on botany, with the encouragement of Buffon, before the Revolution. He began work reluctantly (he needed the money) but soon became fascinated. He was the great pioneer of invertebrate systematics, rearranging and clarifying it greatly. He invented the terms “invertebrate” and “biology”. In his *Philosophie Zoologique* (1809) he held that organisms had evolved, and that the mechanism was the effects of use and disuse, passed on by inheritance of acquired characters.

15. Lamarck argued that in trying to cope with their surroundings, organisms had to use some organs more than others. These would grow larger, and (as everyone knew) those changes would be passed on to offspring, who would have slightly larger versions of those organs, and slightly smaller versions of the ones that were not used.

16. We now know that the mechanisms that increase the size of (for example) muscles when they are used are very specific and complicated adaptations, not general properties of all organs. These changes are also not passed on to offspring.

17. He did not invent the latter, which was “common knowledge” at the time. “Lamarckian inheritance” was not invented by Lamarck or even particularly promoted by him, as it was widely believed in by everybody at that time.

18. Lamarck started out using a Great Chain of Being, but felt forced to start branching it into the first real evolutionary tree.

19. There were controversies between Lamarckians and others in the early 1800s partly owing to political implications of Lamarckian views in medicine. Reformers in England, France, and elsewhere used Lamarck’s views to argue for reform of medical education (“you aren’t teaching the new scientific anatomy”) and other institutions. Etienne Geoffroy Saint-Hilaire (1772-1844) was a major supporter of Lamarck (working at the same museum) who tried to use anatomy to connect vertebrates, invertebrates.

20. Georges Cuvier (1769-1832). Geoffroy’s great opponent, also at the Natural History Museum in Paris. The great founder of comparative anatomy. Also a central figure in purging French academia, in the period after the defeat of Napoleon, of supporters of republican rather than royalist views. Cuvier debunked Geoffroy’s assertions of
homology rather effectively (for example Geoffroy’s supposed “homologies” between legs of crustaceans and fins of fish). Lamarck’s work fell into disfavor among biologists. Adrian Desmond’s book *The Politics of Evolution* goes over these controversies in detail, explains how Cuvier and others played a major role in defending the establishment, and suggests that Darwin probably delayed publishing his work because he didn’t want to be associated with the disreputable Lamarckian position in these controversies.

21. Although Cuvier was the superior anatomist, recent findings in evolution of development (“evo-devo”) have verified that some of Geoffroy Saint-Hilaire’s speculations were actually correct.

22. Views of the unity of nature became more popular in the early 1800s. The *Naturphilosophen* were a group of Romantic philosophers (centered in Germany) who asserted a unity of all life and that different life forms were explained by different amounts of development (but not evolution) along one common course. The Romantics were connected with romantic poets such as Wordsworth, Shelley, Byron, and Keats, and romantic composers such as Beethoven.

23. One major Romantic intellectual was both a poet and a scientist. Johann Wolfgang von Goethe (1749-1832), universally acknowledged since then as the central figure in German literature, just as Shakespeare is in English literature. He was allied with the Romantic philosophers, and was also the first person to make the connection between flower part and leaves (by a developmental argument). He invented the term “morphology”. He argued that flowers arose by the same developmental pathway that leads to leaves, and that it gave flowers if continued further. The Romantics had moved away from individual special creation of individual species towards a unified process.

24. Charles Darwin (1809-1882). In his journey on the Royal Navy survey ship the *Beagle* around South America, and then home around the world, he saw geographic distributions of similar species that convinced him that they had evolved from common ancestors. After reading Thomas Malthus’s book which argued that too many people were born for all to survive, he came up with natural selection, in about 1837, as the mechanism to explain the adaptations of organisms but he delayed publishing this.

25. Ever since then, natural selection, in which adaptation affects the probability that a genetic variation gets passed on to the next generation, has been the chief (almost the only) explanation for how organisms come to be adapted to their surroundings.

26. Alfred Russel Wallace (1823-1913) was the co-discoverer of natural selection (1858, also after reading Malthus). He sent a letter with a paper on this to Darwin, who he knew was interested in explaining species differences. This forced Darwin to publish (originally a small paper side-by-side with Wallace’s). Darwin’s book was published in 1859 and was a sensation – its first printing sold out the same day. Later Darwin tried to explain heredity as well, less successfully. His theory of heredity was called Pangenesis (the units were *gemmules*).
27. What were the chief differences between Lamarck’s theory and Darwin’s theory?

(a) Natural selection is dependent on having genetic variations in the trait. Lamarck’s theory does not need to have differences among individuals (as in principle all individuals could change their characters simultaneously by use and disuse).

(b) Natural selection results from differential survival or reproduction of the different genetic variations. Lamarck’s theory does not make use of differential survival or reproduction, relying instead on (what amounts to) directed mutation.

28. It turns out that the directed mutations that Lamarck was relying on don’t occur – the path from the genes to the phenotype is so complex that a change in the phenotype does not cause a corresponding change in the genes in that direction. On the other hand, the genetic variation that Darwin and Wallace replied on is widespread, and so is differential survival and reproduction.

29. Fleeming Jenkin (1867) made an incisive criticism of Darwin. A pioneering electrical engineer and buddy of the famous physicist William Thompson (Lord Kelvin). Kelvin thought he had a fatal physical objection to Darwin’s work based on the length of time the sun could remain hot if it were burning fuel such as coal. He calculated that it could not be very old. It turns out that nuclear fusion within the sun creates heat, and that invalidates his calculation.

30. Jenkin had a different objection than his friend Kelvin. It was based on blending inheritance. In blending inheritance, which was commonly assumed by everyone to be true, the offspring’s hereditary substances ("blood", as in horse breeding today) was a mixture of the parent’s, and hence intermediate between theirs. This would cause progress to stall, as blending of phenotypes would eliminate half of the variance of the population every generation. Kelvin encouraged Jenkin to publish this. The criticism worried Darwin, who coped by increasing his emphasis on inheritance of acquired characters as a source of variability.

31. Gregor Mendel (1822-1884). Often called an “Austrian monk”, he was actually a science teacher at a Church secondary school in what is now Brno in the Czech Republic, but was then Brünn in the Austro-Hungarian empire. His school was the most prestigious in the area, where there was a lot of interest in plant hybridization. (The composer Leos Janaček was a student of Mendel’s and, as a young man, played the organ at Mendel’s funeral).

32. Under Mendelian inheritance (1864) there is no “blending” of different alleles. The variability does not disappear as it does with blending inheritance. A heterozygote Aa does not produce gametes with medium-sized A’s in them, but instead half A and half a gametes. Mendel’s work was cut short when his abbot, who had been supportive of his scientific work, died, and Mendel was chosen to be the new abbot. When he died he was a famous and beloved local figure but his scientific work languished almost unknown in minor journals.
33. In the 1890s there was increased interest in figuring out how inheritance worked. The chromosomes were known, and their segregation had been observed by cytologists such as August Weismann. There were even hints from work by the cytologist and developmentalist Theodor Boveri that improper segregation of chromosomes might cause developmental problems.

34. Mendel’s laws were rediscovered by Karl Correns, Hugo de Vries, and Erich von Tschermak-Seysenegg in 1900. Maybe only Correns really discovered them independently, the others from finding Mendel’s paper first (though that is not what they claimed).

35. There was then controversy between the “Biometricians” (Francis Galton and Karl Pearson) and the Mendelians over evolution. The Mendelians put forward mutation (discovered by De Vries) as the main mechanism of evolution as against natural selection. They ignored the fact that mutation without natural selection would not be able to explain the directionality of adaptation.

36. The Biometricians (from the 1880s through about 1920) had put forward statistical formulas predicting the distribution of offspring phenotypes. They developed many regression and correlation methods which had a great effect on the development of statistics.

37. Population genetics theory was developed in the 1910s-1940s largely by three people: R. A. Fisher (1890-1962), Sewall Wright (1889-1988 (!)) and J. B. S. Haldane (1892-1964). Fisher also was the major figure in the development of modern mathematical statistics. Wright carried out years of work on the “physiological genetics” of guinea pig coat colors, and many of his graduate students became noted mammalian geneticists. Haldane made contributions to many fields, including the physiology of diving, and produced popular writings on science, but did most of his work in human genetics.

38. Fisher developed the theory of variance components and correlations among relatives in quantitative genetics (among many other things). Wright developed inbreeding coefficients and the methods of calculating them. He and Fisher both developed the theory explaining what happens when genetic drift and other evolutionary forces interact in small populations. Haldane published a series of papers in the 1920s setting forth the equations for gene frequency change in natural selection in many cases. Between them they dominated the field well into the 1950s, when a new generation of theorists such as James Crow, Motoo Kimura, Richard Lewontin, Oscar Kempthorne, and C. Clark Cockerham emerged.

39. Fisher’s, Wright’s, and Haldane’s work was the theoretical basis for the Neodarwinian Synthesis, the combination of Mendelian genetics and evolutionary theory that began to emerge in the 1920s and was widely developed, applied and publicized in the 1940s in books by zoologists and botanists applying the theory to systematics and paleontology,
notably Theodosius Dobzhansky, Ernst Mayr, George Gaylord Simpson, Julian Huxley, and G. Ledyard Stebbins (all but the last one published by Columbia University Press!).

40. This Neodarwinian Synthesis combined genetics with evolution. It enabled quantitative arguments to be made about how fast natural selection would change phenotypes (if you knew their genetic basis), and how strong forces such as genetic drift, gene flow due to migration, and mutation would be. This will be the subject of the next block of lectures in this course.