
Lecture 33. Phylogeny methods, part 5 (Likelihood
methods)

Joe Felsenstein

Department of Genome Sciences and Department of Biology

Lecture 33. Phylogeny methods, part 5 (Likelihood methods) – p.1/25



Likelihoods and odds ratios

Bayes’ Theorem relates prior and posterior probabilities of an

hypothesis H :

Prob (H|D) = Prob (H and D)/ Prob (D)
= Prob (D|H) Prob (H)/ Prob (D)

The ratios of posterior probabilities of two hypotheses, H1 and H2 can be
written, putting this into its “odds ratio" form ( Prob (D) cancels):

Prob (H1|D)

Prob (H2|D)
=

Prob (D|H1)

Prob (D|H2)

Prob (H1)

Prob (H2)

Note that this says that the posterior odds in favor of H1 over H2 are the
product of prior odds and a likelihood ratio. The likelihood of the
hypothesis H is the probability of the observed data given it,

Prob (D|H). This is not the same as the probability of the hypothesis

given the data. That is the posterior probability of H and requires that

we also have a believable prior probability Prob (H)
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Rationale of likelihood inference

If the data consists of n items that are conditionally independent given

the hypothesis Hi,

Prob (D|Hi)

= Prob (D(1)|Hi) Prob (D(2)|Hi) . . . Prob (D(n)|Hi).

and we can then write the likelihood ratio Prob (D|H1) / Prob (D|H2)
as a product of ratios:

Prob (D|H1)

Prob (D|H2)
=

(
n∏

i=1

Prob (D(i)|H1)

Prob (D(i)|H2)

)

If the amount of data is large the likelihood ratio terms will dominate

and push the result towards the correct hypothesis. This can console us

somewhat for the lack of a believable prior.
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Properties of likelihood inference

Likeihood inference has (usually) properties of

Consistency. As the number of data items n gets large, we converge

to the correct hypothesis with probability 1.

Efficiency. Asymptotically, the likelihood estimate has the smallest

possible variance (it need not be best for any finite number n of
data points).
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A simple example – coin tossing

If we toss a coin which has heads probability p and get HHTTHTHHTTT
the likelihood is

L = Prob (D|p)

= pp(1 − p)(1 − p)p(1 − p)pp(1 − p)(1 − p)(1 − p)

= p5(1 − p)6

so that trying to maximize it we get

dL

dp
= 5p4(1 − p)6 − 6p5(1 − p)5
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finding the ML estimate

and searching for a value of p for which the slope is zero:

dL

dp
= p4(1 − p)5 (5(1 − p) − 6p) = 0

which has roots at p = 0, p = 1, and p = 5/11
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Log likelihoods

Alternatively, we could maximize not L but its logarithm. This turns

products into sums:

ln L = 5 ln p + 6 ln(1 − p)

whereby

d(ln L)

dp
=

5

p
−

6

(1 − p)
= 0

so that finally

p̂ = 5/11
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Likelihood curve for coin tosses
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Likelihood on trees

A
C

C

C G

x

z

w

t 1 t 2

t 3

t 4 t 5

t 6
t 7

t 8

y

A tree, with branch lengths, and the data at a single site
This example is used to describe calculation of the likelihood

Since the sites evolve independently on the same tree,

L = Prob (D|T ) =
m∏

i=1

Prob
(
D(i)|T

)
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Likelihood at one site on a tree

We can compute this by summing over all assignments of states x, y, z

and w to the interior nodes

Prob
(
D(i)|T

)
=

∑
x

∑
y

∑
z

∑
w

Prob (A, C, C, C, G, x, y, z, w|T )
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Computing the terms

For each combination of states, the Markov process allows us to express
it as a product of probabilities of a series of changes, with the probability

that we start in state x:

Prob (A, C, C, C, G, x, y, z, w|T ) =

Prob (x) Prob (y|x, t6) Prob (A|y, t1) Prob (C|y, t2)

Prob (z|x, t8) Prob (C|z, t3)

Prob (w|z, t7) Prob (C|w, t4) Prob (G|w, t5)
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Computing the terms

Summing this up, there are 44 = 256 terms in this case:

Prob
(
D(i)|T

)
=

∑
x

∑
y

∑
z

∑
w

Prob (x) Prob (y|x, t6) Prob (A|y, t1) Prob (C|y, t2)

Prob (z|x, t8) Prob (C|z, t3)

Prob (w|z, t7) Prob (C|w, t4) Prob (G|w, t5)
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Getting a recursive algorithm

This seems hopeless, but when we move the summation signs as far

right as possible

Prob
(
D(i)|T

)
=

∑
x

Prob (x)
(∑

y

Prob (y|x, t6) Prob (A|y, t1) Prob (C|y, t2)

)

(∑
z

Prob (z|x, t8) Prob (C|z, t3)
(∑

w

Prob (w|z, t7) Prob (C|w, t4) Prob (G|w, t5)

))
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The pruning algorithm

Note that the pattern of parentheses in the previous expression is the

(A, C) (C, (C, G))

If L
(i)
k (s) is the probability of everything that is observed from node k on

the tree on up, at site i, conditional on node k having state s, we can
express

(
∑

w

Prob (w|z, t7) Prob (C|w, t4) Prob (G|w, t5)

)

as: (∑
w

Prob (w|z, t7)L
(i)
7 (w)

)
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and the algorithm is:

Continuing with this we find that the following algorithm computes the

Lk’s from the L` and Lm above them,

L
(i)
k (s) =

(∑
x

Prob (x|s, t`) L
(i)
` (x)

)

×

(
∑
y

Prob (y|s, tm) L
(i)
m (y)

)
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Starting and finishing the recursion

At the top of the tree the definition of the L’s specifies that they look like

this

(
L(i)(A), L(i)(C), L(i)(G), L(i)(T )

)
= (1, 0, 0, 0)

and at the bottom the likelihood for the whole site can be computed

simply by weighting by the equilibrium state probabilities

L(i) =
∑

x

πxL
(i)
0 (x)
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Ambiguity and error in the sequences

Ambiguity. If a tip has an ambiguity state such as R (purine, either A or
G) we use

L(i) = (1, 0, 1, 0)

and if it has an unknown nucleotide (“N")

L(i) = (1, 1, 1, 1)

This handles ambiguities naturally.

Error. If our sequencing has probability 1 − ε of finding the correct

nucleotide, and ε/3 of inferring each of the three other possibilities,

when an A is observed, the four values should be (1 − ε, ε/3, ε/3, ε/3),

and when a C is observed, they should be (ε/3, 1 − ε, ε/3, ε/3)
The result is a simple handling of sequencing error, provided it occurs
independently in different bases.
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The tree is effectively unrooted

t
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The region around nodes 6 and 8 in the tree, when a new root

(node 0) is placed in that branch
The subtrees are shown as shaded triangles

For the tree on the left of the figure above,

L(i) =
∑

y

∑

z

∑

x

Prob (x) Prob (y|x, t6) Prob (z|x, t8).
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using reversibility ...

Reversibility of the substitution process guarantees us that

Prob (x) Prob (y|x, t6) = Prob (y) Prob (x|y, t6).

Substituting, we get

L(i) =
∑

y

∑

z

∑

x

Prob (y) Prob (x|y, t6) Prob (z|x, t8)

Finally we see that this is the same as the likelihood for a tree rooted at
node 8:

L
(i)
0 (z) = L

(i)
8 (z) Prob (z) Prob (w|z, t6)L

(i)
6 (w)
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A numerical example

Squir Monk
Tarsier

Bovine

Lemur

Human
Chimp

Gorilla
Orang

Gibbon

BarbMacaq
Crab−E.Mac

Rhesus Mac
Jpn Macaq

Mouse

A 232-nucleotide mitochondrial noncoding region data set

over 14 species gives this ML tree with lnL = −2616.86
with a transition/transversion ratio of 30
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Bayesian inference with coin tossing:
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Bayesian methods

An example of Bayesian inference
with coin-tossing. The probability of

heads is assumed to have a prior (top)
which is a truncated exponential with
mean 0.34348 on the interval (0,1).
The likelihood curve (middle) and the
posterior on the probability of heads

(bottom) are shown, when there are 11
tosses with 5 heads.
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Bayesian phylogeny methods

Bayesian inference has been applied to inferring phylogenies (Rannala

and Yang, 1996; Mau and Larget, 1997; Li, Pearl and Doss, 2000).

All use a prior distribution on trees. The prior has enough

influence on the result that its reasonableness should be a major
concern. In particular, the depth of the tree may be seriously

affected by the distribution of depths in the prior.

All use Markov Chain Monte Carlo (MCMC) methods (we will
introduce these in our discussion of coalescents) They sample

from the posterior distribution.

When these methods make sense they not only get you a point

estimate of the phylogeny, they get you a distribution of possible
phylogenies.
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How it was done

This projection produced as a PDF, not a PowerPoint file, and viewed
using the Full Screen mode (in the View menu of Adobe Acrobat Reader):

using the prosper style in LaTeX,

using Latex to make a .dvi file,

using dvips to turn this into a Postscript file,

using ps2pdf to mill it into a PDF file, and

displaying the slides in Adobe Acrobat Reader.

Result: nice slides using freeware.
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