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Likelihoods and odds ratios

Bayes’ Theorem relates prior and posterior probabilities of an
hypothesis H:

Prob (H|D)

Prob (H and D)/ Prob (D)
Prob (D|H) Prob (H)/ Prob (D)

The ratios of posterior probabilities of two hypotheses, H; and H; can be
written, putting this into its “odds ratio" form ( Prob (D) cancels):

Prob (H|D)  Prob (D|H;) Prob (H;)
Prob (H,|D)  Prob (D|H;) Prob (H,)

Note that this says that the posterior odds in favor of H, over H, are the
product of prior odds and a likelihood ratio. The likelihood of the
hypothesis H is the probability of the observed data given it,

Prob (D|H). This is not the same as the probability of the hypothesis
given the data. That is the posterior probability of H and requires that
we also have a believable prior probability Prob (H
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Rationale of likelihood inference

If the data consists of n items that are conditionally independent given
the hypothesis H,

Prob (D|H;)
= Prob (DW|H;) Prob (D@ |H;) ... Prob (D) |H;).

and we can then write the likelihood ratio Prob (D|Hy) / Prob (D|H>)
as a product of ratios:

Prob (D|H>) Prob (D) |Hs)

Prob (D|H)) (ﬁ Prob (D(i)H1)>

If the amount of data is large the likelihood ratio terms will dominate
and push the result towards the correct hypothesis. This can console us
somewhat for the lack of a believable prior.
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Properties of likelihood inference

Likeihood inference has (usually) properties of

- Consistency. As the number of data items n gets large, we converge
to the correct hypothesis with probability 1.

- Efficiency. Asymptotically, the likelihood estimate has the smallest
possible variance (it need not be best for any finite number n of
data points).
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A simple example - coin tossing

If we toss a coin which has heads probability p and get HHTTHTHHTTT
the likelihood is

L = Prob (D|p)
pp(1 —p)(1 —p)p(1 — p)pp(1 — p)(1 — p)(1 — p)
= p°(1-p)°

so that trying to maximize it we get

dL

_:541_ 6_651_ 5)
- p*(1—p) p’(1—p)
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finding the ML estimate

and searching for a value of p for which the slope is zero:

dL

. p*(1—p)° (5(1 —p) —6p) =0

which hasrootsatp =0,p=1,and p = 5/11
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Log likelihoods

Alternatively, we could maximize not L but its logarithm. This turns

products into sums:
InL = 5lnp+6In(1 — p)

whereby

so that finally



Likelihood curve for coin tosses

Likelihood
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Likelihood on trees
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S
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A tree, with branch lengths, and the data at a single site
This example is used to describe calculation of the likelihood
Since the sites evolve independently on the same tree,

L = Prob (D|T) = [ Prob (D@')\T)
1 =1
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Likelihood at one site on a tree

We can compute this by summing over all assignments of states x, y, z

and w to the interior nodes

Prob (DW|T) =

>y Y Y Prob (A, C,C,C,G,x,y, z,w|T)
r Yy z W
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Computing the terms

For each combination of states, the Markov process allows us to express
it as a product of probabilities of a series of changes, with the probability
that we start in state x:

Prob (A,C,C,C, G, x,y, z,w|T) =
Prob () Prob (y|z,ts) Prob (Aly,t1) Prob (Cly,ts)
Prob (z|z,ts) Prob (C|z,t3)
Prob (w|z,t7) Prob (Clw,ty) Prob (G|w,ts)
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Computing the terms

Summing this up, there are 4* = 256 terms in this case:

Prob (DW|T) =

SEIT
Prob () Prob (y|z,tg) Prob (Aly,t1) Prob (Cly,ts)
Prob (z|x,tg) Prob (C|z,t3)
Prob (w|z,t7) Prob (Clw,ts) Prob (G|w,ts5)
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Getting a recursive algorithm

This seems hopeless, but when we move the summation signs as far
right as possible

Prob (DW|T) =
> Prob (z)
(5 Prob (yfa.ta)  Prob (Alytr) Prob (Cly.ta))
)
(Z Prob (z|z,tg) Prob (C|z,t3)

(%j Prob (w2, t7) Prob (Clw, t4) Prob (G|w,t5)))
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The pruning algorithm
Note that the pattern of parentheses in the previous expression is the
(4,C) (C,(C,G))

If LS) (s) is the probability of everything that is observed from node £ on

the tree on up, at site 4, conditional on node k having state s, we can
express

(Z Prob (w|z,t7) Prob (C|w,ts4) Prob (G|wat5)>

das.

(5 Prob (ulz. )2 w))
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and the algorithm is:

Continuing with this we find that the following algorithm computes the

L;’s from the L, and L,,, above them,

L(s) = (X Prob (x]s,t) L (x)

< [ S Prob (yls, t,) L\ (y)
Y
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Starting and finishing the recursion

At the top of the tree the definition of the L’s specifies that they look like

(L@')(A), L), LY(@), LV (T)) — (1,0,0,0)

and at the bottom the likelihood for the whole site can be computed

simply by weighting by the equilibrium state probabilities
i) _ Q
L = g my Ly’ ()
x
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Ambiguity and error in the sequences

Ambiguity. If a tip has an ambiguity state such as R (purine, either A or
G) we use

LYW = (1,0,1,0)

and if it has an unknown nucleotide (“N")
LW = (1,1,1,1)
This handles ambiguities naturally.

Error. If our sequencing has probability 1 — ¢ of finding the correct
nucleotide, and /3 of inferring each of the three other possibilities,
when an A is observed, the four values should be (1 — ¢, /3, £/3, €/3),
and when a C' is observed, they should be (¢/3, 1 — ¢, /3, ¢/3)

The result is a simple handling of sequencing error, provided it occurs
independently in different bases.
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The tree is effectively unrooted

before after

The region around nodes 6 and 8 in the tree, when a new root
(node 0) is placed in that branch
The subtrees are shown as shaded triangles

For the tree on the left of the figure above,

LY = y: y: y: Prob (x) Prob (y|z,ts) Prob (z|x, tg).
Yy oz
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using reversibility ...

Reversibility of the substitution process guarantees us that
Prob (x) Prob (y|z,ts) = Prob (y) Prob (x|y, ts).

Substituting, we get

LY = y: y: y: Prob (y) Prob (x|y,ts) Prob (z|z,ts)
Yy oz o

Finally we see that this is the same as the likelihood for a tree rooted at
node 8:

LY (z) = LY (2) Prob (2) Prob (w|z, ts) L (w)
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A numerical example

Lemur

_ Chimp
Bovine Human Gorilla

\ Orang

Gibbon

BarbMacaq

Crab-E.Mac
Rhesus Mac

Jpn Macaq

Tarsier
Squir Mon

Mouse
A 232-nucleotide mitochondrial noncoding region data set
over 14 species gives this ML tree with In L = —2616.86

with a transition/transversion ratio of 30
Lecture 33. Phylogeny methods, part 5 (Likelihood methods) — p.20/2!



Bayesian inference with coin tossing:

S~
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Bayesian methods

An example of Bayesian inference
with coin-tossing. The probability of
heads is assumed to have a prior (top)
which is a truncated exponential with
mean 0.34348 on the interval (0,1).

The likelihood curve (middle) and the
posterior on the probability of heads

(bottom) are shown, when there are 11
tosses with 5 heads.
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Bayesian phylogeny methods

Bayesian inference has been applied to inferring phylogenies (Rannala
and Yang, 1996; Mau and Larget, 1997; Li, Pearl and Doss, 2000).

= All use a prior distribution on trees. The prior has enough
influence on the result that its reasonableness should be a major
concern. In particular, the depth of the tree may be seriously
affected by the distribution of depths in the prior.

= All use Markov Chain Monte Carlo (MCMC) methods (we will
introduce these in our discussion of coalescents) They sample

from the posterior distribution.

- When these methods make sense they not only get you a point

estimate of the phylogeny, they get you a distribution of possible
phylogenies.
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How it was done

This projection produced as a PDE not a PowerPoint file, and viewed
using the Full Screen mode (in the View menu of Adobe Acrobat Reader):

- using the pr osper style in LaTeX,

- using Latex to make a . dvi file,

= using dvi ps to turn this into a Postscript file,
- using ps2pdf to mill it into a PDF file, and

- displaying the slides in Adobe Acrobat Reader.

Result: nice slides using freeware.
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