
Lecture 1. Phylogeny methods I (Parsimony and such)

Joe Felsenstein

Department of Genome Sciences and Department of Biology

Lecture 1. Phylogeny methods I (Parsimony and such) – p.1/45

Representing a tree in the computer

Using records (in C: structures, in Java and C++: classes) and pointers:
Here is one record-pointer structure representing a small tree:

leftdesc

rightdesc
ancestor

leftdesc

rightdesc
ancestor

leftdesc

rightdesc
ancestor

leftdesc

rightdesc
ancestor

leftdesc

rightdesc
ancestor

tip = 1 tip = 1 tip = 1

tip = 0

tip = 0

Lecture 1. Phylogeny methods I (Parsimony and such) – p.2/45

A better representation, allowing multifurcation

root

nextout

This one allows multifurcations and is more easily rerootable. Each small
circle represents a record with two pointers, "next" and "out", and a
boolean variable "tip".

Lecture 1. Phylogeny methods I (Parsimony and such) – p.3/45

A computer-readable notation for phylogenies

The Newick standard for computer readable trees represents the previous
tree, with branch lengths on each branch, by nested parentheses:

((A:0.1,B:0.2):0.06,C:0.4);

Each interior node is a pair of parentheses, enclosing the subtrees
coming from that node. Each branch length is placed after the node that is
at the top of that branch.

See:
http://evolution.gs.washington.edu/phylip/newicktree.html

Lecture 1. Phylogeny methods I (Parsimony and such) – p.4/45

Reconstructing phylogenies (evolutionary trees)

Parsimony methods. Tree that allows evolution of the sequences with the
fewest changes. Also compatibility methods: tree that perfectly fits the
most states.

Distance matrix methods. Tree that best predicts the entries in a table of
pairwise distances among species. Closely related to clustering
methods.

Maximum likelihood. Tree that has highest probability that the observed
data would evolve. Also Bayesian methods: tree which is most probablea
posteriorigiven some prior distribution on trees.

Invariants. Tree that predicts certain algebraic relationships among
pattrns in the data. Mathematically fun though little-used as it ignores
too much of the data.

Lecture 1. Phylogeny methods I (Parsimony and such) – p.5/45

A tree we will be evaluating

Alpha Delta Gamma Beta Epsilon

Lecture 1. Phylogeny methods I (Parsimony and such) – p.6/45

A simple data set with nucleotide sequences

Characters
Species 1 2 3 4 5 6
Alpha T A G C A T
Beta C A A G C T
Gamma T C G G C T
Delta T C G C A A
Epsilon C A A C A T

Lecture 1. Phylogeny methods I (Parsimony and such) – p.7/45

Most parsimonious states for site 1

Characters
Species 1 2 3 4 5 6
Alpha T A G C A T
Beta C A A G C T
Gamma T C G G C T
Delta T C G C A A
Epsilon C A A C A T

Alpha Delta Gamma Beta Epsilon

Alpha Delta Gamma Beta Epsilon

or

T

C

Lecture 1. Phylogeny methods I (Parsimony and such) – p.8/45

Most parsimonious states for site 2

Characters
Species 1 2 3 4 5 6
Alpha T A G C A T
Beta C A A G C T
Gamma T C G G C T
Delta T C G C A A
Epsilon C A A C A T

Alpha Delta Gamma Beta Epsilon

or

Alpha Delta Gamma Beta Epsilon

or

C
A

Alpha Delta Gamma Beta Epsilon

Alpha Delta Gamma Beta Epsilon

Lecture 1. Phylogeny methods I (Parsimony and such) – p.9/45

Most parsimonious states for site 3

Characters
Species 1 2 3 4 5 6
Alpha T A G C A T
Beta C A A G C T
Gamma T C G G C T
Delta T C G C A A
Epsilon C A A C A T

Alpha Delta Gamma Beta Epsilon

Alpha Delta Gamma Beta Epsilon

A

G

Lecture 1. Phylogeny methods I (Parsimony and such) – p.10/45

Most parsimonious states for sites 4 and 5

Characters
Species 1 2 3 4 5 6
Alpha T A G C A T
Beta C A A G C T
Gamma T C G G C T
Delta T C G C A A
Epsilon C A A C A T

Alpha Delta Gamma Beta Epsilon

or

Alpha Delta Gamma Beta Epsilon

site 4

C

G

site 5

A

C

Lecture 1. Phylogeny methods I (Parsimony and such) – p.11/45

Most parsimonious states for site 6

Characters
Species 1 2 3 4 5 6
Alpha T A G C A T
Beta C A A G C T
Gamma T C G G C T
Delta T C G C A A
Epsilon C A A C A T

Alpha Delta Gamma Beta Epsilon

A

T

Lecture 1. Phylogeny methods I (Parsimony and such) – p.12/45

Steps on this tree

Alpha Delta Gamma Beta Epsilon

1

2
2

3

4

45 56

Steps on this tree, all characters, for one choice of reconstruction at each
site. There are 9 steps in all

Lecture 1. Phylogeny methods I (Parsimony and such) – p.13/45

Steps on another tree (8 in all)

Alpha Delta Gamma Beta Epsilon

1

2
3

4 4
5 56

Lecture 1. Phylogeny methods I (Parsimony and such) – p.14/45

The same tree, rerooted (still 8 steps)

Beta EpsilonAlphaGamma Delta

65
4

2

5

3
1

4

Lecture 1. Phylogeny methods I (Parsimony and such) – p.15/45

An unrooted tree, to be rooted it by outgroup

Gorilla

Chimp
Human

Orang

Gibbon

MacacqueBaboon

Lecture 1. Phylogeny methods I (Parsimony and such) – p.16/45

If we add in Mouse as the outgroup

Gorilla

Chimp
Human

Orang

Gibbon

MacacqueBaboon

Mouse

root attaches to this branch

Lecture 1. Phylogeny methods I (Parsimony and such) – p.17/45

State reconstruction on an unrooted tree

Beta

Epsilon

Alpha

1 3 4

Gamma
5

Delta

6

5

4 2

Lecture 1. Phylogeny methods I (Parsimony and such) – p.18/45

Branch lengths

Gamma

Alpha

Delta

Beta

Epsilon

0.5

1.5
1.0

1.5

2.5 1.0

1.0

Averaged over all state reconstructions. This is not the most parsimonious
tree but the first one we saw.

Lecture 1. Phylogeny methods I (Parsimony and such) – p.19/45

Walter Fitch

Walter Fitch, in 1975

Lecture 1. Phylogeny methods I (Parsimony and such) – p.20/45

Fitch’s algorithm (for nucleotide sequences):

To count the number of steps a tree requires at a given site,
start by constructing a set of nucleotides that are observed
there (ambiguities are handled by having all of the possible
nucleotides be there).
Go down the tree (postorder tree traversal). For each node of
the tree consider its two immediate descendants’ sets, S and
T„ and

If S ∩ T 6= ∅, write it down as the set in that node,

If S ∩ T = ∅, write down S ∪T and count one step.

Lecture 1. Phylogeny methods I (Parsimony and such) – p.21/45

Fitch’s algorithm counting the numbers of state changes

C{ } { }A { } { } { }A GC

Lecture 1. Phylogeny methods I (Parsimony and such) – p.22/45

Fitch’s algorithm counting the numbers of state changes

C{ } { }A { } { } { }A GC

{ }*AC

Lecture 1. Phylogeny methods I (Parsimony and such) – p.23/45

Fitch’s algorithm counting the numbers of state changes

C{ } { }A { } { } { }A GC

AG{ }*AC { }*

Lecture 1. Phylogeny methods I (Parsimony and such) – p.24/45

Fitch’s algorithm counting the numbers of state changes

C{ } { }A { } { } { }A GC

AG{ }*AC

ACG{ }*

{ }*

Lecture 1. Phylogeny methods I (Parsimony and such) – p.25/45

Fitch’s algorithm counting the numbers of state changes

C{ } { }A { } { } { }A GC

AG

AC

{ }*AC

ACG{ }*

{ }

{ }*

Lecture 1. Phylogeny methods I (Parsimony and such) – p.26/45

David Sankoff

David Sankoff, in the 1990s, writing on a glass blackboard
(forwards? backwards?)

Lecture 1. Phylogeny methods I (Parsimony and such) – p.27/45

Sankoff’s algorithm

A dynamic programming algorithm for counting the smallest number of
possible (weighted) state changes needed on a given tree.
Let Sj(i) be the smallest (weighted) number of steps needed to evolve the
subtree at or above node j, given that node j is in state i.
Suppose that cij is the cost of going from state i to state j.

Initially, at tip (say) j

Sj(i) =







0 if node j has (or could have) state i

∞ if node j has any other state

Lecture 1. Phylogeny methods I (Parsimony and such) – p.28/45

Sankoff’s algorithm (continued)

Then proceeding down the tree (postorder tree traversal) for node a

whose immediate descendants are ℓ and r

Sa(i) = min
j

[cij + Sℓ(j)] + min
k

[cik + Sr(k)]

The minimum number of (weighted) steps for the tree is found by
computing at the bottom node (0) the S0(i) and taking the smallest of
these.

Lecture 1. Phylogeny methods I (Parsimony and such) – p.29/45

An example using Sankoff’s algorithm

{C} {A} {C} {A} {G}

0 0 0 0 0

3.5 3.5 1 5 1 5

3.5 3.5 3.5 4.5

6 6 7 8

2.52.5

0 2.5 1 2.5

2.5 0 2.5 1

1 2.5 0 2.5

2.5 1 2.5 0

A C G T

A

C

G

T

cost matrix:

from
to

Lecture 1. Phylogeny methods I (Parsimony and such) – p.30/45

Parsimony as a Steiner Tree

A C G T A C G TA C G T

A C G T

A C TG

0
1
2.5

use one of these

Lecture 1. Phylogeny methods I (Parsimony and such) – p.31/45

Compatibility

Compatibility is an alternative to parsimony. Instead of evaluating a tree by
the sum of steps over all characters, we score each character as being
either compatible with the tree or not. For one of our trees:

Sites
Species 1 2 3 4 5 6
Alpha T A G C A T
Beta C A A G C T
Gamma T C G G C T
Delta T C G C A A
Epsilon C A A C A T
States-1 1 1 1 1 1 1
Steps 2 2 2 1 1 1
Compatible? n n n y y y

Want to find the largest set of characters all compatible with the same tree.

Lecture 1. Phylogeny methods I (Parsimony and such) – p.32/45

Compatibility Method

Two states are compatible if there exists a tree on which both could evolve
with no extra changes of state.

Pairwise Compatibility Theorem. A set S of characters has all
pairs of characters compatible with each other if and only if all of
the characters in the set are jointly compatible (in that there
exists a tree with which all of them are compatible).

(True for what kinds of characters?)
The compatibility test for sites 1 and 2 of the example data is:

site 2 C A
site 1

T X X
C X

Lecture 1. Phylogeny methods I (Parsimony and such) – p.33/45

Compatibility matrix for our example data set

1 2 3 4 5 61 2 3 4 5 6
1
2
3
4
5
6

compatible

not

Lecture 1. Phylogeny methods I (Parsimony and such) – p.34/45

The graph of pairwise compatibility

1

2 3

4

56
There are two “maximal cliques", one larger than the other.

Lecture 1. Phylogeny methods I (Parsimony and such) – p.35/45

Reconstructing the tree (“tree-popping")

Alpha

Beta

Gamma

Delta

Epsilon

Character 1
Alpha

Beta
Gamma

Delta
Epsilon

Character 3

Reconstructing the tree from the clique (1, 2, 3, 6). Each character splits
one set into two parts, creating a new branch which divides the species
according to their state in that character.

Lecture 1. Phylogeny methods I (Parsimony and such) – p.36/45

Reconstructing the tree (“tree-popping")

Alpha

Beta

Gamma

Delta

Epsilon

Character 1
Alpha

Beta
Gamma

Delta
Epsilon

Character 2

Character 3

Gamma

Delta

Beta

Epsilon
Alpha

Reconstructing the tree from the clique (1, 2, 3, 6). Each character splits
one set into two parts, creating a new branch which divides the species
according to their state in that character.

Lecture 1. Phylogeny methods I (Parsimony and such) – p.37/45

Reconstructing the tree (“tree-popping")

Alpha

Beta

Gamma

Delta

Epsilon

Character 1
Alpha

Beta
Gamma

Delta
Epsilon

Character 2

Character 3

Character 6

Beta

Epsilon
Alpha

Gamma

Delta

Gamma

Delta

Beta

Epsilon
Alpha

Reconstructing the tree from the clique (1, 2, 3, 6). Each character splits
one set into two parts, creating a new branch which divides the species
according to their state in that character.

Lecture 1. Phylogeny methods I (Parsimony and such) – p.38/45

Reconstructing the tree (“tree-popping")

Alpha

Beta

Gamma

Delta

Epsilon

Character 1
Alpha

Beta
Gamma

Delta
Epsilon

Character 2

Character 3

Character 6

Beta

Epsilon
Alpha

Gamma

Delta

Gamma

Delta

Beta

Epsilon
Alpha Alpha

Gamma

Delta

Beta

Epsilon

Tree is:

1 326

Reconstructing the tree from the clique (1, 2, 3, 6). Each character splits
one set into two parts, creating a new branch which divides the species
according to their state in that character.

Lecture 1. Phylogeny methods I (Parsimony and such) – p.39/45

Fitch’s counterexample

Fitch’s set of nucleotide sequences that have each pair of sites
compatible, but which are not all compatible with the same tree.

Alpha A A A
Beta A C C
Gamma C G C
Delta C C G
Epsilon G A G

Lecture 1. Phylogeny methods I (Parsimony and such) – p.40/45

Reconstruction of ancestral states

c
21

0 c
23

c
24

S(1) S(2) S(3) S(4)

The shaded state is the one that has been reconstructed at the lower of
these two nodes in the tree. To decide what to reconstruct above it, we
choose the smallest of c2i + S(i)

Lecture 1. Phylogeny methods I (Parsimony and such) – p.41/45

Reconstruction of states in an example

{C} {A} {C} {A} {G}

0 0 0

3.53.5 1 5 1 5

3.53.53.54.5

6 6

2.52.5

0 0

0 0

0 0

0 0

2.5 2.5

2.5 0

0
2.5

0

1 1

0

7 8

2.5

Assignment of possible states, in parsimonious state reconstructions, for
the site used in the example of the Sankoff algorithm. The parsimonious
reconstructions are shown by arrows, with the costs of the changes
shown. The states that are possible at the nodes of the tree are those
whose boxes in the array of numbers are solid, with the others having
dotted lines.

Lecture 1. Phylogeny methods I (Parsimony and such) – p.42/45

Some references
Edwards, A. W. F., and L. L. Cavalli-Sforza. 1964. Reconstruction

ofevolutionary trees. pp. 67-76 in Phenetic and Phylogenetic

Classification,ed. V. H. Heywood and J. McNeill. Systematics

Association Publ. No. 6, London. [The first parsimony paper, using

gene frequencies]

Camin, J. H. and R. R. Sokal. 1965. A method for deducing branching

sequences in phylogeny. Evolution19: 311-326. [The second

parsimony paper, on discrete morphological characters]

Eck, R. V. and M. O. Dayhoff. 1966. Atlas of Protein Sequence and

Structure 1966.National Biomedical Research Foundation, Silver

Spring, Maryland. [First parsimony on molecular sequences]

Lecture 1. Phylogeny methods I (Parsimony and such) – p.43/45

references, cont’d

Kluge, A. G. and J. S. Farris. 1969. Quantitative phyletics and the

evolution of anurans. Systematic Zoology18: 1-32. [An algorithm for

parsimony with symmetrical change along a linear series of ordered

states]

Le Quesne, W. J. 1969. A method of selection of characters in

numerical taxonomy. Systematic Zoology18: 201-205. [Compatibility

method]

Estabrook, G. F., and F. R. McMorris. 1980. When is one estimate of

evolutionary relationships a refinement of another? Journal of

Mathematical Biology10: 367-373. [Best proof of the Pairwise

Compatibility Theorem]

Fitch, W. M. 1971. Toward defining the course of evolution: minimum

change for a specified tree topology. Systematic Zoology20:

406-416. [The Fitch algorithm]
Lecture 1. Phylogeny methods I (Parsimony and such) – p.44/45

references, cont’d

Sankoff, D. 1975. Minimal mutation trees of sequences. SIAM Journal

of Applied Mathematics28: 35-42. [The Sankoff algorithm]

Kitching, I., P. Forey, C. Humphries and D. Williams. 1998. Cladistics.

Theory and Practice of Parsimony Analysis, second edition. Oxford

University Press, Oxford. [A parsimony-only view of methods in

systematics. Very clear.]

Semple, C., and M. Steel. 2003. Phylogenetics. Oxford University

Press, Oxford. [Introduction, in mathematicalese]

Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates,

Sunderland, Massachusetts. [The best possible book on

phylogenetic inference, of course]

Lecture 1. Phylogeny methods I (Parsimony and such) – p.45/45

	Representing a tree in the computer
	A better representation, allowing multifurcation
	A computer-readable notation for phylogenies
	Reconstructing phylogenies (evolutionary trees)

	A tree we will be evaluating
	A simple data set with nucleotide sequences
	Most parsimonious states for site 1
	Most parsimonious states for site 2
	Most parsimonious states for site 3
	Most parsimonious states for sites 4 and 5
	Most parsimonious states for site 6
	Steps on this tree
	Steps on another tree (8 in all)
	The same tree, rerooted (still 8 steps)
	An unrooted tree, to be rooted it by outgroup
	If we add in Mouse as the outgroup
	State reconstruction on an unrooted tree
	Branch lengths
	Walter Fitch
	Fitch's algorithm (for nucleotide sequences):
	Fitch's algorithm counting the numbers of state changes
	Fitch's algorithm counting the numbers of state changes
	Fitch's algorithm counting the numbers of state changes
	Fitch's algorithm counting the numbers of state changes
	Fitch's algorithm counting the numbers of state changes
	David Sankoff
	Sankoff's algorithm
	Sankoff's algorithm (continued)

	An example using Sankoff's algorithm
	Parsimony as a Steiner Tree
	Compatibility
	Compatibility Method
	Compatibility matrix for our example data set
	The graph of pairwise compatibility
	Reconstructing the tree (``tree-popping")
	Reconstructing the tree (``tree-popping")
	Reconstructing the tree (``tree-popping")
	Reconstructing the tree (``tree-popping")
	Fitch's counterexample
	Reconstruction of ancestral states
	Reconstruction of states in an example
	Some references
	references, cont'd
	references, cont'd

