One minute responses

- Are we not doing any more Python after next week?

- I think being able to fully go through one example is helpful.

- Building on previous learning in the Python programming would be great (e.g. use the same base program a few classes in a row so I don’t spend time writing basic error checking code).

- It was very helpful to have feedback about the homework—it would be great to have that every time we get an assignment back

- Could you give some tips to return an elegant chart output for Python problems (and HW solutions)
Useful sources of Python information

- Tutorial: http://docs.python.org/tut/ (by the author of Python)
- References: http://www.python.org/doc/
Making the solution to HW4 look elegant

```python
import sys
filehandle = open(sys.argv[1],"r")

#discard the first line
garbage = filehandle.readline()

lines = filehandle.readlines()
filehandle.close()

names = []
seqs = []
for line in lines :
    names.append(line[0:10].rstrip())
    seqs.append(line[10:].rstrip())

#table columns will be 10 characters wide
colwidth = 10
```
#the first column has no title
header = "\t"
header = header.expandtabs(colwidth)
for name in names :
 centered = name.center(colwidth)
 header += "%10s" %(centered)
print header

import dna_fx
for index1 in range(0,len(names)) :
 #left-justify the names, center the numbers
 row = "%-10s" %(names[index1])
 for index2 in range(0,len(names)) :
 value = str(dna_fx.distance(seqs[index1],seqs[index2]))
 centered = value.center(colwidth)
 row += "%10s" %(centered)
 print row
Review class today

- In theory, today was supposed to be BioPython
- The lab staff are struggling to install it—hopefully by Tuesday
- Today we’ll do a set of linked Python problems instead
Problem 1: Translating RNA to protein

- I have created a Python dictionary containing the genetic code

- Format:
 - Filename is code.py
 - Dictionary name is rna_to_aa
 - Key is an RNA codon, upper case, as a string: "UCC"
 - Entry is a three-letter amino acid abbreviation or "Stp" for a stop codon

- Import this dictionary into a program of your own

- Use it to translate a file containing codons; a sample file is codon_rna.txt

- The file contains only one line, with one or more complete codons on it

- Your program should read this file and print a protein translation
• Program should work for upper or lower case RNA
Problem 2: Translating DNA to protein

- WITHOUT CHANGING THE DICTIONARY, allow your program to translate DNA to protein as well as RNA

- A sample file is codon_dna.txt

- Make sure it continues to work on codon_rna.txt

- Make sure it still works for upper and lower case
Problem 3: Reverse translation (discussion)

- Could we reverse this dictionary to make a protein to RNA dictionary?
- If so, how?
- If not, why not?
Problem 4: Sequence not broken into codons

- Suppose our sequence is not divided into codons with spaces between them
- Modify your program so that it can handle a continuous DNA sequence
- If there are not enough bases to finish the last codon, rather than printing an amino acid, print “???”
Problem 1 solution

```python
import sys
filename = sys.argv[1]
filehandle = open(filename, "r")

rnaseq = filehandle.readline()
rnaseq = rnaseq.upper()

import code
codons = rnaseq.split()
for codon in codons :
    print code.rna_to_aa[codon],

python p1.py codon_rna.txt

Met Pro Val Val Stp Stp Asn Asn Ala Glu Cys
```
Problem 2 solution

Short way:

rnaseq = rnaseq.upper()
rnaseq = rnaseq.replace("T","U")

Not so short way:

rnaseq = rnaseq.upper()

transform string into a list
which can be changed in place
rnalist = list(rnaseq)
for index in range(0,len(rnalist)) :
 if rnalist[index] == "T" :
 rnalist[index] = "U"
transform list back into string
rnaseq = ".join(rnalist)
Problem 3 thoughts

• Keys in a dictionary have to be unique

• This means we can’t have a dictionary where the amino acid is the key and the codon is the entry

• We could have a dictionary where the amino acid is the key and a list of codons is the entry

• Is that useful? Depends on why we wanted it!
import sys
filename = sys.argv[1]
filehandle = open(filename,"r")

rnaseq = filehandle.readline()
rnaseq = rnaseq.upper()
rnaseq = rnaseq.replace("T","U")

import code
codons = []
extrabases = False
for index in range(0,len(rnaseq),3) :
 if index+2 < len(rnaseq) :
 codons.append(rnaseq[index:index+3])
 else :
 extrabases = True
for codon in codons :

print code.rna_to_aa[codon],
if extrabases :
 print "???",
 print "???"