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Gene copies in a population of 10 individuals

Time

A random−mating population
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Going back one generation

Time

A random−mating population
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... and one more

Time

A random−mating population
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... and one more

Time

A random−mating population
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The genealogy of gene copies is a tree

Time

Genealogy of gene copies, after reordering the copies
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Ancestry of a sample of 3 copies

Time

Genealogy of a small sample of genes from the population
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Here is that tree of 3 copies in the pedigree

Time
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Sir John Kingman

J. F. C. Kingman in about 1983

Currently Emeritus Professor of Mathematics at Cambridge University,
U.K., and former head of the Isaac Newton Institute of Mathematical
Sciences.
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Kingman’s coalescent

Random collision of lineages as go back in time (sans recombination)

Collision is faster the smaller the effective population size

u
9

u
7

u
5

u
3

u
8

u6

u
4

u2

Average time for  n  

Average time for  

copies to coalesce to

4N

k(k−1)
  k−1    =   

In a diploid  population of

effective population size  N,

copies to coalesce

  =   4N (1 −  
1
n (  generations

k  

Average time for

 two copies to coalesce

  =  2N  generations

What’s misleading about this diagram: the lineages that coalesce are
random pairs, not necessarily ones that are next to each other in a linear
order.
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The coalescent – a derivation

The probability that k lineages becomes k − 1 one generation earlier
turns out to be (as each lineage “chooses” its ancestor independently):

k(k − 1)/2 × Prob (First two have same parent, rest are different)

(since there are
(
k
2

)
= k(k − 1)/2 different pairs of copies)

We add up terms, all the same, for the k(k − 1)/2 pairs that could
coalesce; the sum is:

k(k − 1)/2 × 1 × 1
2N

×
(
1 − 1

2N

)

×
(
1 − 2

2N

)
× · · · ×

(
1 − k−2

2N

)

so that the total probability that a pair coalesces is

= k(k − 1)/4N + O(1/N2)
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Probabilities of two or more lineages coalescing

Note that the total probability that some combination of lineages
coalesces is

1 − Prob (Probability all genes have separate ancestors)

= 1 −

[

1 ×

(

1 −
1

2N

) (

1 −
2

2N

)

. . .

(

1 −
k − 1

2N

)]

= 1 −

[

1 −
1 + 2 + 3 + · · · + (k − 1)

2N
+ O(1/N2)

]

and since
1 + 2 + 3 + . . . + (n − 1) = n(n − 1)/2

the quantity

= 1 −
[

1 − k(k − 1)/4N + O(1/N2)
]
≃ k(k − 1)/4N + O(1/N2)
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Can calculate how many coalescences are of pairs

This shows, since the terms of order 1/N are the same, that the events
involving 3 or more lineages simultaneously coalescing are in the terms of
order 1/N2 and thus become unimportant if N is large.

Here are the probabilities of 0, 1, or more coalescences with 10 lineages
in populations of different sizes:

N 0 1 > 1

100 0.79560747 0.18744678 0.01694575
1000 0.97771632 0.02209806 0.00018562

10000 0.99775217 0.00224595 0.00000187

Note that increasing the population size by a factor of 10 reduces the
coalescent rate for pairs by about 10-fold, but reduces the rate for triples
(or more) by about 100-fold.
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The coalescent
To simulate a random genealogy, do the following:

1. Start with k lineages

2. Draw an exponential time interval with mean 4N/(k(k − 1))
generations.

3. Combine two randomly chosen lineages.

4. Decrease k by 1.

5. If k = 1, then stop

6. Otherwise go back to step 2.
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How deep is the common ancestor?

Take expected sizes of coalescents with n, n − 1, ... lineages down to 2.

4N ×
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)
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and so on until 2:

4N ×
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)
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)

and cancelling lots of terms in the sum of these
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n

)
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An accurate analogy: Bugs In A Box

There is a box ...
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An accurate analogy: Bugs In A Box

with bugs that are ...
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An accurate analogy: Bugs In A Box

hyperactive, ...
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An accurate analogy: Bugs In A Box

indiscriminate, ...
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An accurate analogy: Bugs In A Box

voracious ...
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An accurate analogy: Bugs In A Box

(eats other bug) ...

Gulp!
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An accurate analogy: Bugs In A Box

and insatiable.
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Random coalescent trees with 16 lineages
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Coalescence is faster in small populations

Change of population size and coalescents

Ne

time

the changes in population size will produce waves of coalescence

time

Coalescence events

time

the tree

The parameters of the growth curve for   Ne  can be inferred by
likelihood methods as they affect the prior probabilities of those trees
that fit the data.

Week 9a: coalescents – p.32/73



Migration can be taken into account

Time

population #1 population #2
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Recombination creates loops

Recomb.

Different markers have slightly different coalescent trees
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Cann, Stoneking, and Wilson

Becky Cann Mark Stoneking the late Allan Wilson

Cann, R. L., M. Stoneking, and A. C. Wilson. 1987. Mitochondrial DNA
and human evolution. Nature 325:a 31-36.
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Mitochondrial Eve
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We want to be able to analyze human evolution

Africa

Europe Asia

"Out of Africa" hypothesis

(vertical scale is not time or
    evolutionary change)
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coalescent and “gene trees” versus species trees

Consistency of gene tree with species tree
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Consistency of gene tree with species tree
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coalescent and “gene trees” versus species trees

Consistency of gene tree with species tree
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coalescent and “gene trees” versus species trees

Consistency of gene tree with species tree

coalescence time
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If the branch is more than Ne generations long ...
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How do we compute a likelihood for a population sample?
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If we have a tree for the sample sequences, we can
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so we can compute

but how to computer the overall likelihood from this?

, ...   
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If we have a sample of 50 copies

 
50−gene sample in a coalescent tree
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The first 10 account for most of the branch length

10 genes sampled randomly out of a 

50−gene sample in a coalescent tree
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... and when we add the other 40 they add less length

10 genes sampled randomly out of a 

50−gene sample in a coalescent tree

(purple lines are the 10−gene tree)
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The basic equation for coalescent likelihoods

In the case of a single population with parameters
Ne effective population size
µ mutation rate per site

and assuming G′ stands for a coalescent genealogy and D for the

sequences,

L = Prob (D | Ne, µ)

=
∑

G′

Prob (G′ | Ne) Prob (D | G′, µ)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Kingman′s prior likelihood of tree
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Rescaling the branch lengths

Rescaling branch lengths of G′ so that branches are given in expected
mutations per site, G = µG′ , we get (if we let Θ = 4Neµ )

L =
∑

G

Prob (G | Θ) Prob (D | G)

as the fundamental equation. For more complex population scenarios one
simply replaces Θ with a vector of parameters.

Week 9a: coalescents – p.53/73



The variability comes from two sources

Ne

Ne
can reduce variability by looking at

(i) more gene copies, or

(2)  Randomness of coalescence of lineages

affected by the

can reduce variance of

branch by examining more sites

number of mutations per site per

mutation rate
(1)   Randomness of mutation

affected by effective population size 

coalescence times allow estimation of  

  µ 

(ii)  more loci
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Computing the likelihood: averaging over coalescents
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Computing the likelihood: averaging over coalescents

t

t

Li
ke

lih
oo

d 
of

 t

Li
ke

lih
oo

d 
of

  

The product of the prior on t,

times the likelihood of that  t  from the data,

when integrated over all possible t’s, gives the

likelihood for the underlying parameter  

The likelihood calculation in a sample of two gene copies

t

1Θ
2

Θ

3
Θ

Θ

P
rio

r 
P

ro
b 

of
 t

2Θ

3
Θ

Θ
1

Θ

Θ

Week 9a: coalescents – p.58/73



Labelled histories
Labelled Histories (Edwards, 1970; Harding, 1971)

Trees that differ in the time−ordering of their nodes

A B C D

A B C D

These two are the same:

A B C D

A B C D

These two are different:
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Sampling approaches to coalescent likelihood

Bob Griffiths Simon Tavaré Mary Kuhner and Jon Yamato
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Monte Carlo integration

To get the area under a curve, we can either evaluate the function (f(x)) at
a series of grid points and add up heights × widths:

or we can sample at random the same number of points, add up height ×
width:
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Importance sampling
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Importance sampling

The function we integrate

We sample from this density

f(x)

g(x)
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The math of importance sampling

∫
f(x) dx =

∫ f(x)
g(x) g(x) dx

= Eg

[
f(x)
g(x)

]

which is the expectation for points sampled from g(x) of the ratio f(x)
g(x) .

This is approximated by sampling a lot (n) of points from g(x) and the
computing the average:

L =
1

n

n∑

i=1

f(xi)

g(xi)
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The importance function used in LAMARC

In Mary Kuhner and Jon Yamato’s program LAMARC they use as the
importance function the probability density of the tree given the data at a
set of “driving values” θ0 of the parameters:

f(G) =
Prob (D |G) Prob (G | θ0)

Prob (D | θ0)

The denominator is impossible to evaluate but as we will see, isn’t really
needed.

The resulting likelihood ratio is

L(Θ)

L(Θ0)
=

1

n

n∑

i=1

Prob (Gi|Θ)

Prob (Gi|Θ0)
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Markov Chain Monte Carlo (MCMC) methods

To do the importance sampling, MCMC methods are employed (in all
programs that do full likelihood or Bayesian analyses).

To sample from f(G), start with a tree Gold and

1. Have a “proposal distribution” from which you sample a new tree
Gnew

2. Compute the function f(Gnew) (we have that also for the old tree)

3. Draw a random fraction R between 0 and 1

4. If R < f(Gnew)
f(Gold)

, accept the new tree. (Note that in that ratio any

horrible, but shared, denominators cancel out).

repeat this vast numbers of times (the correct number of times is infinity).
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Rearrangement to sample points in tree space

A conditional coalescent rearrangement strategy 
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Dissolving a branch and regrowing it backwards

First pick a random node (interior or tip) and remove its subtree 
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We allow it coalesce with the other branches

Then allow this node to re−coalesce with the tree 
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and this gives another coalescent

The resulting tree proposed by this process

Week 9a: coalescents – p.70/73



An example of an MCMC likelihood curve
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Results of analysing a data set with 50 sequences of 500 bases
which was simulated with a true value of  Θ = 0.01
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Major MCMC likelihood or Bayesian programs

LAMARC by Mary Kuhner and Jon Yamato and others. Likelihood
inference with multiple populations, recombination, migration,
population growth. No historical branching events or serial
sampling, yet.

BEAST by Andrew Rambaut, Alexei Drummond and others.
Bayesian inference with multiple populations related by a tree.
Support for serial sampling. Recently got some support for
migration. (No recombination yet).

IM and IMA2 by Rasmus Nielsen and Jody Hey. Two or more
populations allowing both historical splitting and migration after that.
No recombination yet.

genetree by Bob Griffiths and Melanie Bahlo. Likelihood inference of
migration rates and changes in population size. No recombination or
historical branching events.

migrate by Peter Beerli. Likelihood inference with multiple
populations and migration rates. No recombination or historical
branching events yet.
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Approximately Bayesian Computation (ABC) methods

These involve approximating the sampling by computing some “summary
statistics” from the data, then finding parameter values that, in a simulation
of a tree and data, result in summary statistic values close to these.

They are faster, and very popular now.

But ... they are very dependent on getting the right summary statistics so
as not to lose too much power compared to fully-powerful likelihood or
Bayesian MCMC methods.
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