Week 9: Coalescents

Genome 570

March, 2010
Gene copies in a population of 10 individuals

A random-mating population

Time
Going back one generation

A random-mating population

Time
... and one more

A random-mating population

Time
... and one more

A random-mating population
... and one more

A random-mating population
... and one more

A random-mating population

Time
... and one more

A random-mating population
... and one more

A random-mating population

Time
... and one more

A random-mating population
... and one more

A random-mating population
... and one more

A random-mating population

Time
... and one more

A random–mating population
The genealogy of gene copies is a tree

Genealogy of gene copies, after reordering the copies
Ancestry of a sample of 3 copies

Genealogy of a small sample of genes from the population
Here is that tree of 3 copies in the pedigree
Kingman’s coalescent

Random collision of lineages as go back in time (sans recombination)
Collision is faster the smaller the effective population size

Average time for \(k \) copies to coalesce to \(k-1 \) is
\[
\frac{4N}{k(k-1)}
\]

Average time for two copies to coalesce is \(2N \) generations

In a diploid population of effective population size \(N \),
Average time for \(n \) copies to coalesce is
\[
4N \left(1 - \frac{1}{n}\right) \text{ generations}
\]
The Wright-Fisher model

This is the canonical model of genetic drift in populations. It was invented in 1930 and 1932 by Sewall Wright and R. A. Fisher. In this model the next generation is produced by doing this:

- Choose two individuals with replacement (including the possibility that they are the same individual) to be parents,
- Each produces one gamete, these become a diploid individual,
- Repeat these steps until N diploid individuals have been produced.

The effect of this is to have each locus in an individual in the next generation consist of two genes sampled from the parents’ generation at random, with replacement.
The coalescent – a derivation

The probability that \(k \) lineages becomes \(k - 1 \) one generation earlier turns out to be (as each lineage “chooses” its ancestor independently):

\[
k(k - 1)/2 \times \text{Prob (First two have same parent, rest are different)}
\]

(since there are \(\binom{k}{2} = k(k - 1)/2 \) different pairs of copies)

We add up terms, all the same, for the \(k(k - 1)/2 \) pairs that could coalesce; the sum is:

\[
k(k - 1)/2 \times 1 \times \frac{1}{2N} \times \left(1 - \frac{1}{2N}\right) \\
\times \left(1 - \frac{2}{2N}\right) \times \cdots \times \left(1 - \frac{k-2}{2N}\right)
\]

so that the total probability that a pair coalesces is

\[
= k(k - 1)/4N + O(1/N^2)
\]
Can probabilities of two or more lineages coalescing

Note that the total probability that some combination of lineages coalesces is

\[1 - \text{Prob (Probability all genes have separate ancestors)} \]

\[= 1 - \left[1 \times \left(1 - \frac{1}{2N} \right) \left(1 - \frac{2}{2N} \right) \ldots \left(1 - \frac{k - 1}{2N} \right) \right] \]

\[= 1 - \left[1 - \frac{1 + 2 + 3 + \ldots + (k - 1)}{2N} + O(1/N^2) \right] \]

and since

\[1 + 2 + 3 + \ldots + (n - 1) = n(n - 1)/2 \]

the quantity

\[= 1 - \left[1 - k(k - 1)/4N + O(1/N^2) \right] \sim k(k - 1)/4N + O(1/N^2) \]
Can calculate how many coalescences are of pairs

This shows, since the terms of order $1/N$ are the same, that the events involving 3 or more lineages simultaneously coalescing are in the terms of order $1/N^2$ and thus become unimportant if N is large.

Here are the probabilities of 0, 1, or more coalescences with 10 lineages in populations of different sizes:

<table>
<thead>
<tr>
<th>N</th>
<th>0</th>
<th>1</th>
<th>> 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.79560747</td>
<td>0.18744678</td>
<td>0.01694575</td>
</tr>
<tr>
<td>1000</td>
<td>0.97771632</td>
<td>0.02209806</td>
<td>0.00018562</td>
</tr>
<tr>
<td>10000</td>
<td>0.99775217</td>
<td>0.00224595</td>
<td>0.00000187</td>
</tr>
</tbody>
</table>

Note that increasing the population size by a factor of 10 reduces the coalescent rate for pairs by about 10-fold, but reduces the rate for triples (or more) by about 100-fold.
The coalescent

To simulate a random genealogy, do the following:

1. Start with k lineages
2. Draw an exponential time interval with mean $\frac{4N}{k(k-1)}$ generations.
3. Combine two randomly chosen lineages.
4. Decrease k by 1.
5. If $k = 1$, then stop
6. Otherwise go back to step 2.
Random coalescent trees with 16 lineages
Coalescence is faster in small populations

The changes in population size will produce waves of coalescence.

The parameters of the growth curve for N_e can be inferred by likelihood methods as they affect the prior probabilities of those trees that fit the data.
Migration can be taken into account
Recombination creates loops

Different markers have slightly different coalescent trees
If we have a sample of 50 copies

50-gene sample in a coalescent tree
The first 10 account for most of the branch length

10 genes sampled randomly out of a 50–gene sample in a coalescent tree
... and when we add the other 40 they add less length

10 genes sampled randomly out of a 50–gene sample in a coalescent tree

(purple lines are the 10–gene tree)
We want to be able to analyze human evolution

"Out of Africa" hypothesis

Europe

Asia

(Africa)

(vertical scale is not time or evolutionary change)
coalescent and “gene trees” versus species trees

Consistency of gene tree with species tree
coalescent and “gene trees” versus species trees

Consistency of gene tree with species tree
coalescent and “gene trees” versus species trees

Consistency of gene tree with species tree
coalescent and "gene trees" versus species trees

Consistency of gene tree with species tree
coalescent and “gene trees” versus species trees

Consistency of gene tree with species tree
coalescent and “gene trees” versus species trees

Consistency of gene tree with species tree

coalescence time
If the branch is more than N_e generations long ...

Gene tree and Species tree
If the branch is more than N_e generations long ...

Gene tree and Species tree
If the branch is more than N_e generations long ...
How do we compute a likelihood for a population sample?

\[L = \text{Prob} \left(\text{CAGTTTCAGCGTCC}, \text{CAGTTTCAGCGTCC}, \ldots \right) = ?? \]
If we have a tree for the sample sequences, we can

so we can compute

\[
\text{Prob}(\text{CAGTTTCAGCGTCC}, \text{CAGTTTCAGCGTCC}, \ldots \mid \text{Genealogy})
\]

but how to compute the overall likelihood from this?
The basic equation for coalescent likelihoods

In the case of a single population with parameters

\(N_e \) effective population size
\(\mu \) mutation rate per site

and assuming \(G' \) stands for a coalescent genealogy and \(D \) for the sequences,

\[
L = \text{Prob} (D \mid N_e, \mu)
\]

\[
= \sum_{G'} \text{Prob} (G' \mid N_e) \text{Prob} (D \mid G', \mu)
\]

\(\text{Kingman's prior} \quad \text{likelihood of tree} \)
Rescaling the branch lengths

Rescaling branch lengths of G' so that branches are given in expected mutations per site, $G = \mu G'$, we get (if we let $\Theta = 4N_e\mu$)

$$L = \sum_{G} \text{Prob} \left(G \mid \Theta \right) \text{Prob} \left(D \mid G \right)$$

as the fundamental equation. For more complex population scenarios one simply replaces Θ with a vector of parameters.
The variability comes from two sources

1. Randomness of mutation

 - Affected by the mutation rate μ
 - Can reduce variance of number of mutations per site per branch by examining more sites

2. Randomness of coalescence of lineages

 - Affected by effective population size N_e
 - Coalescence times allow estimation of N_e
 - Can reduce variability by looking at
 - (i) more gene copies, or
 - (ii) more loci
Computing the likelihood: averaging over coalescents

The likelihood calculation in a sample of two gene copies

The product of the prior on t, Θ_1, times the likelihood of that t from the data, when integrated over all possible t’s, gives the likelihood for the underlying parameter Θ.

Prior Prob of t |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Θ_1</td>
</tr>
<tr>
<td>t</td>
</tr>
</tbody>
</table>

Likelihood of t |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
</tr>
</tbody>
</table>

Likelihood of Θ |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Θ</td>
</tr>
</tbody>
</table>

Θ_1
Computing the likelihood: averaging over coalescents

The likelihood calculation in a sample of two gene copies

The product of the prior on t, when integrated over all possible t's, gives the likelihood for the underlying parameter Θ

Prior Prob of t

Likelihood of t

When integrated over all possible t's, gives the likelihood for the underlying parameter Θ
Computing the likelihood: averaging over coalescents

The likelihood calculation in a sample of two gene copies

The product of the prior on t, Θ_3

when integrated over all possible t's, gives the likelihood for the underlying parameter Θ

times the likelihood of that t from the data,
Computing the likelihood: averaging over coalescents

The likelihood calculation in a sample of two gene copies

The product of the prior on \(t \),

\[
\text{Prior Prob of } t
\]

when integrated over all possible \(t \)'s, gives the likelihood for the underlying parameter \(\Theta \).

times the likelihood of that \(t \) from the data,

\[
\text{Likelihood of } t
\]
Labelled histories

Labelled Histories (Edwards, 1970; Harding, 1971)

Trees that differ in the time–ordering of their nodes

These two are different:

These two are the same:
Sampling approaches to coalescent likelihood

Bob Griffiths
Simon Tavaré
Mary Kuhner and Jon Yamato
Monte Carlo integration

To get the area under a curve, we can either evaluate the function \(f(x) \) at a series of grid points and add up heights \(\times \) widths:

or we can sample at random the same number of points, add up height \(\times \) width:
Importance sampling
Importance sampling

The function we integrate

We sample from this density
The math of importance sampling

\[\int f(x) \, dx = \int \frac{f(x)}{g(x)} \, g(x) \, dx \]

= \quad E_g \left[\frac{f(x)}{g(x)} \right]

which is the expectation for points sampled from \(g(x) \) of the ratio \(\frac{f(x)}{g(x)} \).

This is approximated by sampling a lot (n) of points from \(g(x) \) and the computing the average:

\[L = \frac{1}{n} \sum_{i=1}^{n} \frac{f(x_i)}{g(x_i)} \]
Rearrangement to sample points in tree space

A conditional coalescent rearrangement strategy
Dissolving a branch and regrowing it backwards

First pick a random node (interior or tip) and remove its subtree
We allow it to coalesce with the other branches.

Then allow this node to re-coalesce with the tree.
and this gives another coalescent

The resulting tree proposed by this process
The resulting likelihood ratio is

\[
\frac{L(\Theta)}{L(\Theta_0)} = \frac{1}{n} \sum_{i=1}^{n} \frac{\text{Prob}(G_i|\Theta)}{\text{Prob}(G_i|\Theta_0)}
\]
An example of an MCMC likelihood curve

Results of analysing a data set with 50 sequences of 500 bases which was simulated with a true value of $\Theta = 0.01$
Major MCMC likelihood or Bayesian programs

- **LAMARC** by Mary Kuhner and Jon Yamato and others. Likelihood inference with multiple populations, recombination, migration, population growth. No historical branching events or serial sampling, yet.

- **BEAST** by Andrew Rambaut, Alexei Drummond and others. Bayesian inference with multiple populations related by a tree. Support for serial sampling (no migration or recombination yet).

- **genetree** by Bob Griffiths and Melanie Bahlo. Likelihood inference of migration rates and changes in population size. No recombination or historical branching events.

- **migrate** by Peter Beerli. Likelihood inference with multiple populations and migration rates. No recombination or historical branching events yet.

- **IM** and **IMa** by Rasmus Nielsen and Jody Hey. Two or more populations allowing both historical splitting and migration after that. No recombination yet.