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Cann, Stoneking, and Wilson

Becky Cann Mark Stoneking the late Allan Wilson

Cann, R. L., M. Stoneking, and A. C. Wilson. 1987. Mitochondrial DNA
and human evolution. Nature 325:a 31-36.

Week 10: Coalescents, Consensus trees, etc. – p.2/87



Mitochondrial Eve
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Gene copies in a population of 10 individuals

Time

A random−mating population
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Going back one generation

Time

A random−mating population
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... and one more

Time

A random−mating population
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... and one more

Time

A random−mating population
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... and one more

Time

A random−mating population
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... and one more
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A random−mating population
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A random−mating population
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... and one more
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A random−mating population

Week 10: Coalescents, Consensus trees, etc. – p.12/87



... and one more

Time

A random−mating population
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... and one more

Time

A random−mating population
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... and one more

Time

A random−mating population
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The genealogy of gene copies is a tree

Time

Genealogy of gene copies, after reordering the copies
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Ancestry of a sample of 3 copies

Time

Genealogy of a small sample of genes from the population
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Here is that tree of 3 copies in the pedigree

Time
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Kingman’s coalescent

Random collision of lineages as go back in time (sans recombination)

Collision is faster the smaller the effective population size
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What’s misleading about this diagram: the lineages that coalesce are
random pairs, not necessarily ones that are next to each other in a linear
order.
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The Wright-Fisher model

This is the canonical model of genetic drift in populations. It was invented

in 1930 and 1932 by Sewall Wright and R. A. Fisher.

In this model the next generation is produced by doing this:

Choose two individuals with replacement (including the possibility that
they are the same individual) to be parents,

Each produces one gamete, these become a diploid individual,

Repeat these steps until N diploid individuals have been produced.

The effect of this is to have each locus in an individual in the next
generation consist of two genes sampled from the parents’ generation at
random, with replacement.
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The coalescent – a derivation

The probability that k lineages becomes k − 1 one generation earlier

turns out to be (as each lineage “chooses” its ancestor independently):

k(k − 1)/2 × Prob (First two have same parent, rest are different)

(since there are
(
k
2

)
= k(k − 1)/2 different pairs of copies)

We add up terms, all the same, for the k(k − 1)/2 pairs that could
coalesce; the sum is:

k(k − 1)/2 × 1 × 1
2N

×
(
1 − 1

2N

)

×
(
1 − 2

2N

)
× · · · ×

(
1 − k−2

2N

)

so that the total probability that a pair coalesces is

= k(k − 1)/4N + O(1/N2)
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Can probabilities of two or more lineages coalescing

Note that the total probability that some combination of lineages
coalesces is

1 − Prob (Probability all genes have separate ancestors)

= 1 −

[

1 ×

(

1 −
1

2N

) (

1 −
2

2N

)

. . .

(

1 −
k − 1

2N

)]

= 1 −

[

1 −
1 + 2 + 3 + · · · + (k − 1)

2N
+ O(1/N2)

]

and since
1 + 2 + 3 + . . . + (n − 1) = n(n − 1)/2

the quantity

= 1 −
[

1 − k(k − 1)/4N + O(1/N2)
]
≃ k(k − 1)/4N + O(1/N2)
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Can calculate how many coalescences are of pairs

This shows, since the terms of order 1/N are the same, that the events
involving 3 or more lineages simultaneously coalescing are in the terms of

order 1/N2 and thus become unimportant if N is large.

Here are the probabilities of 0, 1, or more coalescences with 10 lineages

in populations of different sizes:

N 0 1 > 1

100 0.79560747 0.18744678 0.01694575
1000 0.97771632 0.02209806 0.00018562
10000 0.99775217 0.00224595 0.00000187

Note that increasing the population size by a factor of 10 reduces the

coalescent rate for pairs by about 10-fold, but reduces the rate for triples
(or more) by about 100-fold.
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The coalescent

To simulate a random genealogy, do the following:

1. Start with k lineages

2. Draw an exponential time interval with mean 4N/(k(k − 1))
generations.

3. Combine two randomly chosen lineages.

4. Decrease k by 1.

5. If k = 1, then stop

6. Otherwise go back to step 2.
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An accurate analogy: Bugs In A Box

There is a box ...
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An accurate analogy: Bugs In A Box

with bugs that are ...
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An accurate analogy: Bugs In A Box

hyperactive, ...
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An accurate analogy: Bugs In A Box

indiscriminate, ...
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An accurate analogy: Bugs In A Box

voracious ...
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An accurate analogy: Bugs In A Box

(eats other bug) ...

Gulp!
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An accurate analogy: Bugs In A Box

and insatiable.
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Random coalescent trees with 16 lineages
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Coalescence is faster in small populations

Change of population size and coalescents

Ne

time

the changes in population size will produce waves of coalescence

time

Coalescence events

time

the tree

The parameters of the growth curve for   Ne  can be inferred by

likelihood methods as they affect the prior probabilities of those trees

that fit the data.
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Migration can be taken into account

Time

population #1 population #2
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Recombination creates loops

Recomb.

Different markers have slightly different coalescent trees
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If we have a sample of 50 copies

 
50−gene sample in a coalescent tree
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The first 10 account for most of the branch length

10 genes sampled randomly out of a 

50−gene sample in a coalescent tree
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... and when we add the other 40 they add less length

10 genes sampled randomly out of a 

50−gene sample in a coalescent tree

(purple lines are the 10−gene tree)
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We want to be able to analyze human evolution

Africa

Europe Asia

"Out of Africa" hypothesis

(vertical scale is not time or
    evolutionary change)
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coalescent and “gene trees” versus species trees

The species tree
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coalescent and “gene trees” versus species trees

Consistency of gene tree with species tree
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coalescent and “gene trees” versus species trees

Consistency of gene tree with species tree
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coalescent and “gene trees” versus species trees

Consistency of gene tree with species tree
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coalescent and “gene trees” versus species trees

Consistency of gene tree with species tree

Week 10: Coalescents, Consensus trees, etc. – p.44/87



coalescent and “gene trees” versus species trees

Consistency of gene tree with species tree

coalescence time
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If the branch is more than Ne generations long ...
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Gene tree and Species tree
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How do we compute a likelihood for a population sample?
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If we have a tree for the sample sequences, we can

CAGTTTTAGCGTCC
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so we can compute

but how to computer the overall likelihood from this?

, ...   

CAGTTTCAGCGTCC

CAGTTTTAGCGTCC
CAGTTTTAGCGTCC

CAGTTTCAGCGTCCCAGTTTTGGCGTCC

CAGTTTCAGCGTCC

Week 10: Coalescents, Consensus trees, etc. – p.50/87



The basic equation for coalescent likelihoods

In the case of a single population with parameters

Ne effective population size
µ mutation rate per site

and assuming G′ stands for a coalescent genealogy and D for the

sequences,

L = Prob (D | Ne, µ)

=
∑

G′

Prob (G′ | Ne) Prob (D | G′, µ)

︸ ︷︷ ︸ ︸ ︷︷ ︸

Kingman′s prior likelihood of tree
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Rescaling the branch lengths

Rescaling branch lengths of G′ so that branches are given in expected

mutations per site, G = µG′ , we get (if we let Θ = 4Neµ )

L =
∑

G

Prob (G | Θ) Prob (D | G)

as the fundamental equation. For more complex population scenarios one
simply replaces Θ with a vector of parameters.
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The variability comes from two sources

Ne

Ne

can reduce variability by looking at

(i) more gene copies, or

(2)  Randomness of coalescence of lineages

affected by the

can reduce variance of

branch by examining more sites

number of mutations per site per

mutation rate

(1)   Randomness of mutation

affected by effective population size 

coalescence times allow estimation of  

  µ 

(ii)  more loci
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Computing the likelihood: averaging over coalescents
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Computing the likelihood: averaging over coalescents

t

t

L
ik

e
lih

o
o

d
 o

f 
t

L
ik

e
lih

o
o

d
 o

f 
 

The product of the prior on t,

times the likelihood of that  t  from the data,

when integrated over all possible t’s, gives the

likelihood for the underlying parameter  

The likelihood calculation in a sample of two gene copies

t

3
Θ

Θ

P
ri
o

r 
P

ro
b

 o
f 

t

3
Θ

Θ

Θ

Week 10: Coalescents, Consensus trees, etc. – p.56/87



Computing the likelihood: averaging over coalescents
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Labelled histories

Labelled Histories (Edwards, 1970; Harding, 1971)

Trees that differ in the time−ordering of their nodes

A B C D

A B C D

These two are the same:

A B C D

A B C D

These two are different:
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Sampling approaches to coalescent likelihood

Bob Griffiths Simon Tavaré Mary Kuhner and Jon Yamato
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Monte Carlo integration

To get the area under a curve, we can either evaluate the function (f(x)) at
a series of grid points and add up heights × widths:

or we can sample at random the same number of points, add up height ×
width:
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Importance sampling
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Importance sampling

The function we integrate

We sample from this density

f(x)

g(x)
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The math of importance sampling

∫
f(x) dx =

∫ f(x)
g(x) g(x) dx

= Eg

[
f(x)
g(x)

]

which is the expectation for points sampled from g(x) of the ratio f(x)
g(x) .

This is approximated by sampling a lot (n) of points from g(x) and the
computing the average:

L =
1

n

n∑

i=1

f(xi)

g(xi)
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Rearrangement to sample points in tree space

A conditional coalescent rearrangement strategy 
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Dissolving a branch and regrowing it backwards

First pick a random node (interior or tip) and remove its subtree 
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We allow it coalesce with the other branches

Then allow this node to re−coalesce with the tree 
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and this gives another coalescent

The resulting tree proposed by this process
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The resulting likelihood ratio is

L(Θ)

L(Θ0)
=

1

n

n∑

i=1

Prob (Gi|Θ)

Prob (Gi|Θ0)

(“Wait a second – where in this expression is the data?”) It’s in the
sampling that gives you the Gi: the data biases those samples in the
correct way.
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An example of an MCMC likelihood curve
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Results of analysing a data set with 50 sequences of 500 bases

which was simulated with a true value of  Θ = 0.01
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Major MCMC likelihood or Bayesian programs

LAMARC by Mary Kuhner and Jon Yamato and others. Likelihood
inference with multiple populations, recombination, migration,
population growth. No historical branching events or serial
sampling, yet.

BEAST by Andrew Rambaut, Alexei Drummond and others.
Bayesian inference with multiple populations related by a tree.
Support for serial sampling (no migration or recombination yet).

genetree by Bob Griffiths and Melanie Bahlo. Likelihood inference of
migration rates and changes in population size. No recombination or
historical branching events.

migrate by Peter Beerli. Likelihood inference with multiple
populations and migration rates. No recombination or historical
branching events yet.

IM and IMa by Rasmus Nielsen and Jody Hey. Two or more
populations allowing both historical splitting and migration after that.
No recombination yet.
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Trees we will use for consensus trees

DA C B E D FG A CG F B E D A CG F B E
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Trees we will use for consensus trees

A C B E D FG A CG F B E D A CG F B E D

(for unrooted trees we would use partitions induced by branches instead
of clades)
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Trees we will use for consensus trees

A C B E D FG A CG F B E D A CG F B E D
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Trees we will use for consensus trees

A C B E D FG A CG F B E D A CG F B E D

(Do we count this one if the trees are considered rooted? unrooted?)
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Trees we will use for consensus trees

A C B E D FG A CG F B E D A CG F B E D

Here is a clade that is found on only two of the trees, so it is not included
in the Strict Consensus Tree.
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Their strict consensus tree

A CG F B E D
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A distressing case for the strict consensus tree

A B C D E F G B C D E F G A

Only one species moves ...
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A distressing case for the strict consensus tree

A B C D E F G

... but the strict consensus tree becomes totally unresolved.
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Majority-rule consensus tree

A CG F B E D

100

100

67

67
100
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The Adams consensus tree

For rooted trees, Adams (1972, 1986) suggested:

1. Take all rooted triples on each tree.

2. Retain those that are not contradicted, where lack of resolution does
not count as contradiction.

3. Construct a tree of these.
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Two of the possible triples to examine

DA C B E D FG A CG F B E D A CG F B E

The green triple shows the same rooted topology on all three trees. The

red triple is contradicted and does not get used in the Adams Consensus
Tree.
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The Adams consensus tree

A CG F B E D
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Steel, Böcker, and Dress’s shocking disproof

Steel, M., S. Böcker, and A. W. M. Dress. 2000. Simple but fundamental
limits for supertree and consensus tree methods. Systematic Biology 49(2):
363-368.

They put forward three minimal requirements for an unrooted Adams-like
consensus tree based on observations of quartets, rather than triples.
Note that a quartet, like a triple, has three possible topologies, but

unrooted ones: ((A,B),(C,D)) and ((A,C),(B,D)) and ((A,D),(B,C)).

The result shouldn’t be altered by relabelling all the species in a
consistent way.

The result should not depend on the order in which the trees are
input.

If a quartet appears in all trees, it should appear in the consensus.

Alas, they then show there is no consensus tree method for unrooted
trees that can satisfy all of these!
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A consensus subtree

F C A B G DFCA BDE F AB D E
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A consensus subtree

F C A B G DFCA BDE F AB D E
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A consensus subtree

F C A B G DFCA BDE F AB D E

B DFA
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A supertree

F C A B G D

F C A BA B G DC A B D

Construct a tree with all tips, for which each of the smaller trees is a
subtree. What to do if there is conflict? There are various suggestions.
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