Systematics and molecular evolution: some history of numerical methods

Joe Felsenstein

Department of Genome Sciences and Department of Biology
University of Washington, Seattle
Irrelevant?

In the 1960’s molecular biologists commonly considered all population biology as an irrelevancy at best: mere “stamp collecting"

In science there is only physics, all else is stamp collecting

Ernest Rutherford

By contrast, population biologists have been using molecular methods since the late 1960’s, but to a degree limited by their limited funding.
The problem

Population biologists have been working on numerical methods for inferring phylogenies (evolutionary trees) since the 1960’s. Their importance has only recently been recognized by molecular biologists. The inference of, and use of phylogenies is a central problem in computational molecular biology, though in bioinformatics textbooks they usually are covered in only a small part of the book (usually just a few pages).
Why evolution?

Nothing in biology makes sense except in the light of evolution.

Theodosius Dobzhansky, 1973

Perhaps that is an overstatement (what about physics and chemistry?), but we can say that evolution is how the data came to be, and taking evolution into account is the only efficient way of analyzing it.
Ernst Mayr and George Gaylord Simpson

Major figures in the completion of the “modern synthesis” or “Neodarwinian synthesis” in the 1940s, and leaders of the “evolutionary systematics” approach to taxonomic classification, dominant until the 1970s.
A pattern of grades with very unequal rates of overall evolution is implicit in the use of paraphyletic groups in Mayr and Simpson’s practice.
A horse tree drawn by Simpson

(tree fading away – it is getting obese and nonspecific.)
Willi Hennig (1913-1976)

The major advocate and developer of “phylogenetic systematics” which advocates that all groups be monophyletic. Outlined a simple method for inferring phylogenies that can be used when characters do not conflict.
Positions on classification as of about 1960

- **Evolutionary systematics.** George Gaylord Simpson and Ernst Mayr led a movement that allowed non-monophyletic (paraphyletic) groups such as reptiles, on the assumption that groups could be separated by real differences of rates of evolution (sometimes “grades” rather than “clades”). But did molecular data show similar differences of rates of evolution as morphology?

- **Phylogenetic systematics.** Willi Hennig advocated purely monophyletic classification.

- **Phenetics.** Sokal and Sneath advocated making a classification without reference to evolution, using numerical clustering methods
Molecular evolution gets off the ground

Zuckerkandl and Pauling in 1962 discussed using trees to infer ancestral sequences, and named this “chemical paleogenetics". They were about 30 years ahead of their time.

(But then it isn’t fair to anyone to compare them unfavorably to Linus Pauling).
Developers in the late 1950s and early 1960s of numerical clustering methods and chief originators and advocates of the “phenetic” approach to classification, which clusters organisms by similarity without reference to evolutionary history.
The first numerical phylogeny: Sokal and Michener 1957

A tree of bees, which Michener intended as an inference of the phylogeny.
Cavalli-Sforza and Edwards, 1963; Edwards, 1970

Introduced (in 1963-1964) the parsimony and likelihood methods for inferring phylogenies, and were co-inventors (with Fitch and Margoliash) of the distance matrix methods. These are the three major methods for reconstructing phylogenies.
The first phylogeny by parsimony

Gene frequencies of human populations, the tree of minimum length in gene frequency space, inferred by Edwards and Cavalli-Sforza.
Camin in the 1970s, one of the Caminalcules

Camin noticed (in 1965) that students who did the best job recovering the true “phylogeny” of the Caminalcules made the reconstruction which required the fewest changes of state.
J. S. Farris and Arnold Kluge in the 1980s

Margaret Dayhoff

The late Margaret Dayhoff was a pioneer of molecular databases (starting in 1965), made the first use of parsimony methods on molecular data, and presented trees of gene families in the *Atlas of Protein Sequences* (which become the Protein Information Resource) in 1966. In the recognition of gene families she was 30 years ahead of her time. She also compiled the first empirical substitution rate matrices for amino acids, intended to form the basis of a probabilistic model of protein evolution.
Walter Fitch (1929-2011) was central figure in methods for analyzing molecular evolution data, including the first major distance matrix method (1967), and developing the algorithm (in 1971) that counts changes of state in the parsimony method for DNA sequences. He also introduced the concepts (and terms) of orthology and paralogy.
Fitch and Margoliash's 1967 distance tree

Fig. 3 (right above). A gene phylogeny as reconstructed from observable mutations in several heme-containing globins. See Fig. 2 for details. The percent "standard deviation" (7) for this tree is 1.33.
In 1969 Jukes and Cantor introduced the first stochastic process model of DNA change, as one paragraph buried in the midst of a giant review of protein sequence evolution.

Cantor later made important technical discoveries in genomics. Jukes was a nutritional biochemist who was the primary person responsible for insisting that pregnant women get folic acid in their diet.
A major figure in mathematical statistics (confidence intervals, Neyman-Pearson testing theorems), Neyman was enticed in 1971 into doing the first likelihood analysis of molecular sequence data for protein sequences with a 3-species tree and a Jukes-Cantor-like symmetrical model of change among 20 amino acids.
Further development of statistical methods

- “Pruning” algorithm for efficient calculation of likelihoods on trees (me, 1973, but not yet applied to molecules)
Further development of statistical methods

- “Pruning” algorithm for efficient calculation of likelihoods on trees (me, 1973, but not yet applied to molecules)
- Proof of inconsistency of parsimony (me, 1978; James Cavender too, 1978)
Further development of statistical methods

- “Pruning” algorithm for efficient calculation of likelihoods on trees (me, 1973, but not yet applied to molecules)
- Proof of inconsistency of parsimony (me, 1978; James Cavender too, 1978)
- Programs distributed (WAGNER78, JS Farris 1978; PHYLIP, me, 1980; PAUP, Swofford, 1983)
Further development of statistical methods

- “Pruning” algorithm for efficient calculation of likelihoods on trees (me, 1973, but not yet applied to molecules)
- Proof of inconsistency of parsimony (me, 1978; James Cavender too, 1978)
- Programs distributed (WAGNER78, JS Farris 1978; PHYLIP, me, 1980; PAUP, Swofford, 1983)
- Pruning algorithm used to make ML work for DNA (me, 1981)
Further development of statistical methods

- “Pruning” algorithm for efficient calculation of likelihoods on trees (me, 1973, but not yet applied to molecules)
- Proof of inconsistency of parsimony (me, 1978; James Cavender too, 1978)
- Programs distributed (WAGNER78, JS Farris 1978; PHYLIP, me, 1980; PAUP, Swofford, 1983)
- Pruning algorithm used to make ML work for DNA (me, 1981)
- Bootstrap and other sampling methods assess confidence of clades (me, 1985; Penny and Hendy, 1985)
Further development of statistical methods

- “Pruning” algorithm for efficient calculation of likelihoods on trees (me, 1973, but not yet applied to molecules)
- Proof of inconsistency of parsimony (me, 1978; James Cavender too, 1978)
- Programs distributed (WAGNER78, JS Farris 1978; PHYLIP, me, 1980; PAUP, Swofford, 1983)
- Pruning algorithm used to make ML work for DNA (me, 1981)
- Bootstrap and other sampling methods assess confidence of clades (me, 1985; Penny and Hendy, 1985)
- Neighbor-Joining method (Nei and Saitou, 1987)
Further development of statistical methods

- “Pruning” algorithm for efficient calculation of likelihoods on trees (me, 1973, but not yet applied to molecules)
- Proof of inconsistency of parsimony (me, 1978; James Cavender too, 1978)
- Programs distributed (WAGNER78, JS Farris 1978; PHYLIP, me, 1980; PAUP, Swofford, 1983)
- Pruning algorithm used to make ML work for DNA (me, 1981)
- Bootstrap and other sampling methods assess confidence of clades (me, 1985; Penny and Hendy, 1985)
- Neighbor-Joining method (Nei and Saitou, 1987)
- Bayesian MCMC inference (Yang/Rannala/Mau/Newton/Larget/Li/Pearl/Doss, 1997-2000)
A noticeable tendency is for much of the influence to come from outside systematics, and for biochemists (as opposed to “molecular biologists”) to be an important influence on work in molecular evolution.
Conflict over phylogeny methods, 1970s to 1980s

Conflict over phylogeny methods, 1970s to 1980s

- Advocacy of his views is taken up by a number of systematists (Brundin, Nelson, Platnick) in the 1970s.
Conflict over phylogeny methods, 1970s to 1980s

- Advocacy of his views is taken up by a number of systematists (Brundin, Nelson, Platnick) in the 1970s.

- Some numerical systematists, chiefly J. S. Farris, ally with them.
Conflict over phylogeny methods, 1970s to 1980s

- Advocacy of his views is taken up by a number of systematists (Brundin, Nelson, Platnick) in the 1970s.

- Some numerical systematists, chiefly J. S. Farris, ally with them.

- They adopt an evangelical and messianic style and attack entrenched evolutionary systematists, calling themselves “phylogenetic systematists”.
Conflict over phylogeny methods, 1970s to 1980s

- Advocacy of his views is taken up by a number of systematists (Brundin, Nelson, Platnick) in the 1970s.
- Some numerical systematists, chiefly J. S. Farris, ally with them.
- They adopt an evangelical and messianic style and attack entrenched evolutionary systematists, calling themselves “phylogenetic systematists”.
- Tensions between phylogenetic systematists and others within the Numerical Taxonomy Conference lead to major conflicts at its 1979 meeting at Harvard University. Not a fun meeting.
Conflict over phylogeny methods, 1970s to 1980s

- Advocacy of his views is taken up by a number of systematists (Brundin, Nelson, Platnick) in the 1970s.
- Some numerical systematists, chiefly J. S. Farris, ally with them.
- They adopt an evangelical and messianic style and attack entrenched evolutionary systematists, calling themselves “phylogenetic systematists”.
- Tensions between phylogenetic systematists and others within the Numerical Taxonomy Conference lead to major conflicts at its 1979 meeting at Harvard University. Not a fun meeting.
- They found a separate organization, the Willi Hennig Society, in 1980 (today their house journal is *Cladistics*)
More conflict over phylogeny methods, 1980s to today

- Many other numerically-oriented people, of various views, found themselves outside this group.
More conflict over phylogeny methods, 1980s to today

- Many other numerically-oriented people, of various views, found themselves outside this group.

- Molecular evolutionists mostly avoided these conflicts and have remained pragmatic and eclectic.
More conflict over phylogeny methods, 1980s to today

- Many other numerically-oriented people, of various views, found themselves outside this group.

- Molecular evolutionists mostly avoided these conflicts and have remained pragmatic and eclectic.

- After about 1990, the Society for Systematic Biology and the Society of Molecular Biology and Evolution became the gathering points for all the folks who were outside of the Will Hennig Society. Many of them defined themselves as phylogenetic systematists, but they wanted normal scientific communication.
More conflict over phylogeny methods, 1980s to today

- Many other numerically-oriented people, of various views, found themselves outside this group.
- Molecular evolutionists mostly avoided these conflicts and have remained pragmatic and eclectic.
- After about 1990, the Society for Systematic Biology and the Society of Molecular Biology and Evolution became the gathering points for all the folks who were outside of the Will Hennig Society, Many of them defined themselves as phylogenetic systematists, but they wanted normal scientific communication.
- In the 1990s use of likelihood and Bayesian methods (and distance methods interpreted statistically) gradually became recognized as “statistical phylogenetics”, an alternative to the Hennig Society’s parsimony-only approach to reconstructing phylogenies.
More conflict over phylogeny methods, 1980s to today

- Many other numerically-oriented people, of various views, found themselves outside this group.
- Molecular evolutionists mostly avoided these conflicts and have remained pragmatic and eclectic.
- After about 1990, the Society for Systematic Biology and the Society of Molecular Biology and Evolution became the gathering points for all the folks who were outside of the Will Hennig Society. Many of them defined themselves as phylogenetic systematists, but they wanted normal scientific communication.
- In the 1990s use of likelihood and Bayesian methods (and distance methods interpreted statistically) gradually became recognized as “statistical phylogenetics”, an alternative to the Hennig Society’s parsimony-only approach to reconstructing phylogenies.
- The Hennig Society spurns compromise and has centers of strength among morphological systematists.
Positions on classification nowadays

- **Phylogenetic systematics.** Willi Hennig advocated purely monophyletic classification. Now the (strongly) dominant approach.

- **Evolutionary systematics.** Has almost faded away. Its adherents were reluctant to make it algorithmic.

- **Phenetics.** Although Sokal and Sneath strongly influenced the field of numerical clustering, their approach to biological classification has few adherents.

- **IDMVM** One person (me) takes the view that It Doesn’t Matter Very Much, as we use the phylogeny, and, given that we never use the classification system. This is widely regarded as a marginal crackpot view [“A bizarre thumb in the eye to systematists” – Michael Sanderson].
Classification versus phylogenies

It is critically important to realize that the task of making a classification system and the task of making inferences about phylogeny are logically separable. You can infer the phylogeny without yet deciding how it will be used (or not used) in determining the classification.

Many biologists do not understand this. Systematists insist on not understanding it.

Most textbooks muddle it thoroughly.

Historians of science and philosophers of science do the same.
Rise of interest in things phylogenetic

Web of Science citations that have "phylogen*"
Rise of phylogenetic considerations in genomics

fraction of Web of Science citations with "genom*" that have "phylogen*"
Rise of statistical-model-based methods

fraction of those Web of Science citations that have "phylog*" or "cladist*" that also have "likelihood" or "bayesian"
References

References

References

