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The same tree?
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All possible trees
a b

Forming all 4-species trees by adding the next species in all possible
places
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All possible trees
a b

a bca bc bc a

Forming all 4-species trees by adding the next species in all possible
places
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All possible trees
a b

a bca bc bc a

a d c b

c bd a

c b

c

a d

a b d

a c b d

etc. etc.

Forming all 4-species trees by adding the next species in all possible
places
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The number of rooted bifurcating trees:

1 × 3 × 5 × 7 × . . . × (2n − 3)

= (2n − 3)!/
(

(n − 2)! 2n−2
)
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which is:
species number of trees

1 1
2 1
3 3
4 15
5 105
6 945
7 10,395
8 135,135
9 2,027,025

10 34,459,425
11 654,729,075
12 13,749,310,575
13 316,234,143,225
14 7,905,853,580,625
15 213,458,046,676,875
16 6,190,283,353,629,375
17 191,898,783,962,510,625
18 6,332,659,870,762,850,625
19 221,643,095,476,699,771,875
20 8,200,794,532,637,891,559,375
30 4.9518 ×10

38

40 1.00985 ×10
57

50 2.75292 ×10
76
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Mapping an unrooted tree into a rooted tree
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... one with one fewer species.
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For one tree topology

The space of trees varying all 2n − 3 branch lengths, each a nonegative
number, defines an “orthant" (open corner) of a (2n − 3)-dimensional real
space:
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Through the looking glass ...
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Through the looking glass ...
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Through the looking glass ...
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Through the looking glass ...
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Tree space

t1
t2

t1
t2

an example:  three species with a clock

A B C

t 1

t 2

t 1

t 2

OK

not possible

trifurcation

etc.

when we consider all three possible 
topologies, the space looks like:
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A global maximum is not easy to find

If start here
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A global maximum is not easy to find

If start here
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A global maximum is not easy to find

If start here
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A global maximum is not easy to find

If start here
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A global maximum is not easy to find

If start here

Lecture 2. Tree space and searching tree space – p.19/48



A global maximum is not easy to find

If start here
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A global maximum is not easy to find

If start here
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A global maximum is not easy to find

If start here
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A global maximum is not easy to find

If start here
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A global maximum is not easy to find

If start here
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A global maximum is not easy to find

If start here
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A global maximum is not easy to find

If start here
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A global maximum is not easy to find

If start here
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A global maximum is not easy to find

If start here
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A global maximum is not easy to find

end up here

If start here
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A global maximum is not easy to find

end up here but global maximum is here

If start here
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Nearest-neighbor interchanges (NNIs)

U V

U V

U V

S T

S T

S T S T

U V

and reforming them in one of the two possible alternative ways:

is rearranged by dissolving the connections to an interior branch

A subtree

(The triangles are subtrees)
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all 15 trees, connected by NNIs
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The graph of all 15 5-species unrooted trees, connected by NNIs
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with parsimony scores
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The same graph with parsimony scores (try a “greedy" search with NNI’s)
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Subtree pruning and regrafting (SPR) rearrangement
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Here is the result:

of the other branches
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Tree bisection and reconnection (TBR) rearrangement
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Here is the result:

Break a branch, separate the subtrees

Connect a branch of one
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to a branch of the other
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Greedy search by sequential addition
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Greedy search by addition of species in a fixed order (A, B, C, D, E) in the
best place each time. Lecture 2. Tree space and searching tree space – p.36/48



Goloboff’s time-saving trick

H
−K

L

M
−

R

S−U

A

V−Z

V−Z

A−G H−R

S−U

B−G

Goloboff’s economy in computing scores of rearranged trees
Once the “views” have been computed, they can be taken to

represent subtrees, without going inside those subtrees
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Star decomposition
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“Star decomposition" search for best tree can happen in multiple ways
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Disk-covering
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“Disk covering" – assembly of a tree from overlapping estimated subtrees
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Shortest Hamiltonian path problem
(a) (b)

(c) (d)
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Search tree for this problem

etc. etc.

etc.etc.

add 1 add 2 add 3

add 2 add 3 add 4 add 5

add 3 add 5

add 8 add 10add 9

add 9

add 9add 3add 10

add 10 add 8

add 8add 3add 10

add 10 add 8

add 8add 3

add 9

etc. etc.

start

(1,2,3,4,5,6,7,8,9,10) (1,2,3,4,5,6,7,9,8,10) (1,2,3,4,5,6,7,10,8,9)

(1,2,3,4,5,6,7,8,10,9) (1,2,3,4,5,6,7,9,10,8) (1,2,3,4,5,6,7,10,9,8)

add 4

etc.

add 9
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Search tree of trees
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same, with parsimony scores in place of trees
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Polynomial time and exponential time
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How does the time taken by an algorithm depend on the size of the
problem? If it is a polynomial (even one with big coefficients), with a big
enough case it is faster than one that depends on the size exponentially.
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NP completeness and NP hardness

P

NP

does this
part exist?

NP Hard

is P = NP?

NP Complete

(This diagram is not quite correct – see the diagrams on the Wikipedia page for “NP-hard”).

P = problems that can be solved by a polynomial time algorithm

NP complete = problems for which a proposed solution can be checked in polynomial time
but for which it can be proven that if one of them is in P, all are.

NP hard = problems for which a solution can be checked in polynomial time, but might be not
solvable in polynomial time.
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Some references
Felsenstein, J. 1978. The number of evolutionary trees. Systematic Zoology27: 27-33.

(Correction, vol. 30, p. 122, 1981) [Review of counting tip-labelled trees, recursion for
counting multifurcating case]

Cavalli-Sforza, L. L. and A. W. F. Edwards. 1967. Phylogenetic analysis: models and estimation
procedures. American Journal of Human Genetics19: 233-257. also Evolution21: 550-570.
[Includes counting and tree shapes]

Camin, J. H. and R. R. Sokal. 1965. A method for deducing branching sequences in phylogeny.
Evolution19: 311-326. [Early parsimony paper includes rearrangement of trees]

Waterman, M. S. and T. F. Smith. 1978. On the similarity of dendrograms. Journal of Theoretical

Biology73: 789-800. [Defines NNIs. Uses them to get a distance between trees.]
Maddison, D. R. 1991. The discovery and importance of multiple islands of most-parsimonious

trees. Systematic Zoology40: 315-328. [Discusses heuristic search strategy involving ties,
multiple starts]

Farris, J. S. 1970. Methods for computing Wagner trees. Systematic Zoology19: 83-92. [Early
parsimony algorithms paper is one of first to mention sequential addition strategy]
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continued
Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing

phylogenetic trees. Molecular Biology and Evolution4: 406-425. [First mention of
star-decomposition search for best trees, sort of]

Strimmer, K., and A. von Haeseler. 1996. Quartet puzzling: a quartet maximum likelihood
method for reconstructing tree topologies. Molecular Biology and Evolution13: 964-969.
[Assembles trees out of quartets]

Huson, D., S. Nettles, L. Parida, T. Warnow, and S. Yooseph. 1998. The disk-covering method for
tree reconstruction. pp. 62-75 in Proceedings of “Algorithms and Experiments” (ALEX98), Trento,

Italy, Feb. 9-11, 1998, ed. R. Battiti and A. A. Bertossi. [“Disk-covering method” for long
stringy trees]

Swofford, D. L. and G. J. Olsen. 1990. Phylogeny reconstruction. Chapter 11, Pp. 411-501 in
Molecular Systematics,ed. D. M. Hillis and C. Moritz. Sinauer Associates, Sunderland,
Massachusetts. [Review that discusses strategies, names SPR and TBR rearrangement
methods]

Foulds, L. R. and R. L. Graham. 1982. The Steiner problem in phylogeny is NP-complete.
Advances in Applied Mathematics3: 43-49. [Parsimony is NP-hard]

Graham, R. L. and L. R. Foulds. 1982. Unlikelihood that minimal phylogenies for a realistic
biological study can be constructed in reasonable computat ional time. Mathematical

Biosciences60: 133-142. [ ... and more]
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continued
Hendy, M. D. and D. Penny. 1982. Branch and bound algorithms to determine minimal

evolutionary trees. Mathematical Biosciences60: 133-142 [Introduced branch-and-bound for
phylogenies]

Felsenstein, J. 2004. Inferring Phylogenies.Sinauer Associates, Sunderland, Massachusetts. [For
this lecture the material is chapters 3, 4, and 5]

Semple, C. and M. Steel. 2003. Phylogenetics.Oxford University Press, Oxford. [Also covers
search strategies]
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