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The Wright-Fisher model

This is the canonical model of genetic drift in populations. It was invented
in 1932 and 1930 by Sewall Wright and R. A. Fisher.
In this model the next generation is produced by doing this:

Choose two individuals with replacement (including the possibility that
they are the same individual) to be parents,

Each produces one gamete, these become a diploid individual,

Repeat these steps until N diploid individuals have been produced.

The effect of this is to have each locus in an individual in the next
generation consist of two genes sampled from the parents’ generation at
random, with replacement.
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The ancestry of gene copies in a Wright-Fisher model

Time

A random−mating population
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Each copy drawn from a random one in previous generation

Time

A random−mating population
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and going further back ...

Time

A random−mating population
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and even further

Time

A random−mating population
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and further

Time

A random−mating population

Lecture 7. Coalescents – p.7/46



and so on

Time

A random−mating population
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and on

Time

A random−mating population
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(yawn)

Time

A random−mating population
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nearly there

Time

A random−mating population
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almost!

Time

A random−mating population
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one more after this

Time

A random−mating population
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OK, so this is the pedigree of genes

Time

A random−mating population

Lecture 7. Coalescents – p.14/46



The ancestry of gene copies, untangled

Time

Genealogy of gene copies, after reordering the copies
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The ancestry of present-day gene copies (untangled)

Time

Genealogy of gene copies, after reordering the copies
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The ancestry of a sample of 3 genes

Time

Genealogy of a small sample of genes from the population
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Where the tree of 3 copies is in the genealogy

Time
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J. F. C. Kingman, about 1980

Invented the coalescent process, making the study of
genealogies of samples from populations possible
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A pair of lineages going back in time

Time
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A pair of lineages going back in time

Time
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A pair of lineages going back in time

Time
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Each generation there is a probability

Time
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... of 1 in 20 that they will collide

Time
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... and if we toss enough times ...

Time
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... they will finally collide

Time
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Kingman’s coalescent process

Random collision of lineages as go back in time (sans recombination)

Collision is faster the smaller the effective population size
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The coalescent – a derivation

The probability that k lineages becomes k − 1 one generation earlier is
(as each lineage “chooses" its ancestor independently):

k(k − 1)/2 × Prob (First two have same parent, rest are different)

(since there are
(

k

2

)

= k(k − 1)/2 different pairs of copies)
We add up terms, all the same, for the k(k − 1)/2 pairs that could
coalesce:

= k(k − 1)/2 × 1 ×

1

2N
×

(

1 −

1

2N

)

×

(
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2
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)

× . . . ×
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)

so that the total probability that a pair coalesces is

= k(k − 1)/4N + O(1/N2)
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probability that someone coalesces

Note that the total probability that some combination of lineages
coalesces is

1 − Prob (all genes have separate ancestors)

= 1 −

[

1 ×
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1 −

1

2N

) (
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2N
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. . .
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)]

= 1 −

[

1 −

1 + 2 + 3 + . . . + (k − 1)

2N
+ O(1/N2)

]

and since
1 + 2 + 3 + . . . + (n − 1) = n(n − 1)/2
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(continued)

the quantity

= 1 −

[

1 − k(k − 1)/4N + O(1/N2)
]

≃ k(k − 1)/4N + O(1/N2)

showing that the events involving 3 or more lineages simultaneously
coalescing are in the terms of order 1/N2 and thus become unimportant
if N is large. For example, when k = 10 and N = 100 , there is a 0.7956
chance that there is no coalescence, 0.1874 that one pair coalesces, and
only 0.01695 that more than one coalesces.
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The coalescent
To simulate a random genealogy, do the following:

1. Start with k lineages

2. Draw an exponential time interval with mean 4N/(k(k − 1))
generations.

3. Combine two randomly chosen lineages.

4. Decrease k by 1.

5. If k = 1, then stop

6. Otherwise go back to step 2.
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How far back to the common ancestor?

Adding up the expectations of the n − 1 coalescent events this is
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An important property of coalescents

You can sample a genealogy of ancestry of a
sample of genes without bothering to reconstruct
the ancestry of any other copies.

Lecture 7. Coalescents – p.33/46



Random coalescent trees with 16 lineages
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Effect of varying population size

Change of population size and coalescents

Ne

time

the changes in population size will produce waves of coalescence

time

Coalescence events

time

the tree

The parameters of the growth curve for   Ne  can be inferred by
likelihood methods as they affect the prior probabilities of those trees
that fit the data.
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A coalescent with migration (2 populations)

Time

population #1 population #2 Lecture 7. Coalescents – p.36/46



Migration (3 populations) with 4Nm = 1

population 1 population 2 population 3
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A recombining coalescent

Recomb.

Different markers have slightly different coalescent trees
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Trees changing by recombination along a genome

1 142 143 417 418 562
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How far until the tree is substantially different?

Roughly, until a branch from the tip down to the root is expected to have one recombination,
when markers are this far apart.

The time back to the root is about 4Ne generations.
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How far until the tree is substantially different?

Roughly, until a branch from the tip down to the root is expected to have one recombination,
when markers are this far apart.

The time back to the root is about 4Ne generations.

In humans, for times long ago the effective population size was as low as Ne = 10000
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How far until the tree is substantially different?

Roughly, until a branch from the tip down to the root is expected to have one recombination,
when markers are this far apart.

The time back to the root is about 4Ne generations.

In humans, for times long ago the effective population size was as low as Ne = 10000

Humans have about one recombination every 108 nucleotides.

We want to find how far along the genome to go so that 4Ne r = 1
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How far until the tree is substantially different?

Roughly, until a branch from the tip down to the root is expected to have one recombination,
when markers are this far apart.

The time back to the root is about 4Ne generations.

In humans, for times long ago the effective population size was as low as Ne = 10000

Humans have about one recombination every 108 nucleotides.

We want to find how far along the genome to go so that 4Ne r = 1

... or 40000r = 1
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How far until the tree is substantially different?

Roughly, until a branch from the tip down to the root is expected to have one recombination,
when markers are this far apart.

The time back to the root is about 4Ne generations.

In humans, for times long ago the effective population size was as low as Ne = 10000

Humans have about one recombination every 108 nucleotides.

We want to find how far along the genome to go so that 4Ne r = 1

... or 40000r = 1

That is 108/(4 × 104) = 2500 nucleotides.
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How far until the tree is substantially different?

Roughly, until a branch from the tip down to the root is expected to have one recombination,
when markers are this far apart.

The time back to the root is about 4Ne generations.

In humans, for times long ago the effective population size was as low as Ne = 10000

Humans have about one recombination every 108 nucleotides.

We want to find how far along the genome to go so that 4Ne r = 1

... or 40000r = 1

That is 108/(4 × 104) = 2500 nucleotides.

If population sizes were bigger, it is less!
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How far until the tree is substantially different?

Roughly, until a branch from the tip down to the root is expected to have one recombination,
when markers are this far apart.

The time back to the root is about 4Ne generations.

In humans, for times long ago the effective population size was as low as Ne = 10000

Humans have about one recombination every 108 nucleotides.

We want to find how far along the genome to go so that 4Ne r = 1

... or 40000r = 1

That is 108/(4 × 104) = 2500 nucleotides.

If population sizes were bigger, it is less!

But this assumes evenly distributed recombinations. With “hot spots” the spacing is
greater because you are most of the time in a “cold” region.
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How far until the tree is substantially different?

Roughly, until a branch from the tip down to the root is expected to have one recombination,
when markers are this far apart.

The time back to the root is about 4Ne generations.

In humans, for times long ago the effective population size was as low as Ne = 10000

Humans have about one recombination every 108 nucleotides.
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... or 40000r = 1

That is 108/(4 × 104) = 2500 nucleotides.

If population sizes were bigger, it is less!

But this assumes evenly distributed recombinations. With “hot spots” the spacing is
greater because you are most of the time in a “cold” region.

It is really the same thing as regions of linkage disequilibrium – maybe 50,000 bases
long. This is no accident, they are actually the same phenomenon.
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How far until the tree is substantially different?

Roughly, until a branch from the tip down to the root is expected to have one recombination,
when markers are this far apart.

The time back to the root is about 4Ne generations.

In humans, for times long ago the effective population size was as low as Ne = 10000

Humans have about one recombination every 108 nucleotides.

We want to find how far along the genome to go so that 4Ne r = 1

... or 40000r = 1

That is 108/(4 × 104) = 2500 nucleotides.

If population sizes were bigger, it is less!

But this assumes evenly distributed recombinations. With “hot spots” the spacing is
greater because you are most of the time in a “cold” region.

It is really the same thing as regions of linkage disequilibrium – maybe 50,000 bases
long. This is no accident, they are actually the same phenomenon.

Which means a sample from humans will have about 3.3 × 109/50000 = 66000

different trees!
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A coalescent of 50 copies
 
50−gene sample in a coalescent tree

Lecture 7. Coalescents – p.41/46



the first 10 copies only
10 genes sampled randomly out of a 

50−gene sample in a coalescent tree
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All copies, ancestry of first 10 in purple
10 genes sampled randomly out of a 

50−gene sample in a coalescent tree

(purple lines are the 10−gene tree)
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We ultimately want to treat this case

Africa

Europe Asia

"Out of Africa" hypothesis

(vertical scale is not time or
    evolutionary change)
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coalescents in related species

Consistency of gene tree with species tree

coalescence time
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